P. Monmousseau, Gabriel Jarry, Florian Bertosio, D. Delahaye, M. Houalla
{"title":"预测戴高乐机场安全检查站的客流","authors":"P. Monmousseau, Gabriel Jarry, Florian Bertosio, D. Delahaye, M. Houalla","doi":"10.1109/AIDA-AT48540.2020.9049190","DOIUrl":null,"url":null,"abstract":"Airport security checkpoints are critical areas in airport operations. Airports have to manage an important passenger flow at these checkpoints for security reason while maintaining service quality. The cost and quality of such an activity depend on the human resource management for these security operations. An appropriate human resource management can be obtained using an estimation of the passenger flow. This paper investigates the prediction at a strategic level of the passenger flows at Paris Charles De Gaulle airport security checkpoints using machine learning techniques such as Long Short-Term Memory neural networks. The derived models are compared to the current prediction model using three different mathematical metrics. In addition, operational metrics are also designed to further analyze the performance of the obtained models.","PeriodicalId":106277,"journal":{"name":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Passenger Flow at Charles De Gaulle Airport Security Checkpoints\",\"authors\":\"P. Monmousseau, Gabriel Jarry, Florian Bertosio, D. Delahaye, M. Houalla\",\"doi\":\"10.1109/AIDA-AT48540.2020.9049190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airport security checkpoints are critical areas in airport operations. Airports have to manage an important passenger flow at these checkpoints for security reason while maintaining service quality. The cost and quality of such an activity depend on the human resource management for these security operations. An appropriate human resource management can be obtained using an estimation of the passenger flow. This paper investigates the prediction at a strategic level of the passenger flows at Paris Charles De Gaulle airport security checkpoints using machine learning techniques such as Long Short-Term Memory neural networks. The derived models are compared to the current prediction model using three different mathematical metrics. In addition, operational metrics are also designed to further analyze the performance of the obtained models.\",\"PeriodicalId\":106277,\"journal\":{\"name\":\"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIDA-AT48540.2020.9049190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIDA-AT48540.2020.9049190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Passenger Flow at Charles De Gaulle Airport Security Checkpoints
Airport security checkpoints are critical areas in airport operations. Airports have to manage an important passenger flow at these checkpoints for security reason while maintaining service quality. The cost and quality of such an activity depend on the human resource management for these security operations. An appropriate human resource management can be obtained using an estimation of the passenger flow. This paper investigates the prediction at a strategic level of the passenger flows at Paris Charles De Gaulle airport security checkpoints using machine learning techniques such as Long Short-Term Memory neural networks. The derived models are compared to the current prediction model using three different mathematical metrics. In addition, operational metrics are also designed to further analyze the performance of the obtained models.