贝叶斯不确定性模型下的最优neyman-pearson分类

Lori A. Dalton
{"title":"贝叶斯不确定性模型下的最优neyman-pearson分类","authors":"Lori A. Dalton","doi":"10.1109/GENSIPS.2013.6735943","DOIUrl":null,"url":null,"abstract":"A Bayesian modeling framework over an uncertainty class of underlying distributions has been used to derive an optimal MMSE error estimator for arbitrary classifiers and an optimal Bayesian classification rule that minimizes expected error, both relative to the overall misclassification rate. In this work, we use the same Bayesian framework to formulate a Neyman-Pearson based approach that optimizes relative to true and false positive rates. True and false positive rates are often of more practical use than the misclassification rate in medical applications, meanwhile the Neyman-Pearson theory does not require modeling or knowledge of the prior class probabilities.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal neyman-pearson classification under Bayesian uncertainty models\",\"authors\":\"Lori A. Dalton\",\"doi\":\"10.1109/GENSIPS.2013.6735943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Bayesian modeling framework over an uncertainty class of underlying distributions has been used to derive an optimal MMSE error estimator for arbitrary classifiers and an optimal Bayesian classification rule that minimizes expected error, both relative to the overall misclassification rate. In this work, we use the same Bayesian framework to formulate a Neyman-Pearson based approach that optimizes relative to true and false positive rates. True and false positive rates are often of more practical use than the misclassification rate in medical applications, meanwhile the Neyman-Pearson theory does not require modeling or knowledge of the prior class probabilities.\",\"PeriodicalId\":336511,\"journal\":{\"name\":\"2013 IEEE International Workshop on Genomic Signal Processing and Statistics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Genomic Signal Processing and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSIPS.2013.6735943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于底层分布的不确定性类的贝叶斯建模框架已被用于导出任意分类器的最佳MMSE误差估计器和最小化预期误差的最佳贝叶斯分类规则,两者都相对于总体误分类率。在这项工作中,我们使用相同的贝叶斯框架来制定基于内曼-皮尔逊的方法,该方法相对于真阳性率和假阳性率进行了优化。在医学应用中,真阳性率和假阳性率往往比误分类率更有实际用途,同时,内曼-皮尔逊理论不需要建模或了解先验类概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal neyman-pearson classification under Bayesian uncertainty models
A Bayesian modeling framework over an uncertainty class of underlying distributions has been used to derive an optimal MMSE error estimator for arbitrary classifiers and an optimal Bayesian classification rule that minimizes expected error, both relative to the overall misclassification rate. In this work, we use the same Bayesian framework to formulate a Neyman-Pearson based approach that optimizes relative to true and false positive rates. True and false positive rates are often of more practical use than the misclassification rate in medical applications, meanwhile the Neyman-Pearson theory does not require modeling or knowledge of the prior class probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信