电机轴承屏蔽故障检测与诊断

J. Suwatthikul, S. Sornmuang
{"title":"电机轴承屏蔽故障检测与诊断","authors":"J. Suwatthikul, S. Sornmuang","doi":"10.1109/IDAACS.2011.6072768","DOIUrl":null,"url":null,"abstract":"Recent years have seen increased attention to the Preventive Maintenance (PM) where corrective actions are promptly taken before small faults manifest themselves to be serious failures. Also, these undetected incipient faults present in an unhealthy machine can result in unnecessary waste of energy. Therefore, fault detection and diagnosis at the very early stage have become important. This paper presents an application of an Adaptive-Network-based Fuzzy Inference System (ANFIS) for diagnosing faults in the bearing shield of an induction motor. The experimental results show that the vibration parameters can efficiently indicate the occurrence of the faults which can be detected by the system.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fault detection and diagnosis of a motor bearing shield\",\"authors\":\"J. Suwatthikul, S. Sornmuang\",\"doi\":\"10.1109/IDAACS.2011.6072768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen increased attention to the Preventive Maintenance (PM) where corrective actions are promptly taken before small faults manifest themselves to be serious failures. Also, these undetected incipient faults present in an unhealthy machine can result in unnecessary waste of energy. Therefore, fault detection and diagnosis at the very early stage have become important. This paper presents an application of an Adaptive-Network-based Fuzzy Inference System (ANFIS) for diagnosing faults in the bearing shield of an induction motor. The experimental results show that the vibration parameters can efficiently indicate the occurrence of the faults which can be detected by the system.\",\"PeriodicalId\":106306,\"journal\":{\"name\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2011.6072768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,人们越来越关注预防性维护(PM),即在小故障演变为严重故障之前及时采取纠正措施。此外,在不健康的机器中出现的这些未被检测到的早期故障可能导致不必要的能源浪费。因此,早期的故障检测和诊断变得非常重要。本文介绍了一种基于自适应网络的模糊推理系统(ANFIS)在异步电动机轴承屏蔽故障诊断中的应用。实验结果表明,振动参数能有效地指示故障的发生,并能被系统检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault detection and diagnosis of a motor bearing shield
Recent years have seen increased attention to the Preventive Maintenance (PM) where corrective actions are promptly taken before small faults manifest themselves to be serious failures. Also, these undetected incipient faults present in an unhealthy machine can result in unnecessary waste of energy. Therefore, fault detection and diagnosis at the very early stage have become important. This paper presents an application of an Adaptive-Network-based Fuzzy Inference System (ANFIS) for diagnosing faults in the bearing shield of an induction motor. The experimental results show that the vibration parameters can efficiently indicate the occurrence of the faults which can be detected by the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信