{"title":"基于GMDH的分类器集成自适应选择","authors":"Jin Xiao, Changzheng He","doi":"10.1109/FITME.2008.132","DOIUrl":null,"url":null,"abstract":"In multiple classifiers combination, how to choose an effective combination method is a very critical issue. This article introduces group method of data handing (GMDH) theory into multiple classifiers combination, and proposes a novel algorithm GAES for classifier ensemble selection. It is able to select an appropriate ensemble from the classifier pool adaptively, determine the combination weights among base classifiers, and complete the combination process automatically. We experimentally test GAES over 16 UCI data sets and 4 ELENA data sets. The results show that compared with the commonly used combination methods, GAES is statistically superior to Bayesian (Kittler et al., 1998), Linear (Benediktsson et al., 1997) and ESNN (Lipnickas and Korbicz, 2004) methods, and achieves a comparable classification rate than MAJ (Xu et al., 1992) and Genetic (Cho, 1999).","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Selection of Classifier Ensemble Based on GMDH\",\"authors\":\"Jin Xiao, Changzheng He\",\"doi\":\"10.1109/FITME.2008.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multiple classifiers combination, how to choose an effective combination method is a very critical issue. This article introduces group method of data handing (GMDH) theory into multiple classifiers combination, and proposes a novel algorithm GAES for classifier ensemble selection. It is able to select an appropriate ensemble from the classifier pool adaptively, determine the combination weights among base classifiers, and complete the combination process automatically. We experimentally test GAES over 16 UCI data sets and 4 ELENA data sets. The results show that compared with the commonly used combination methods, GAES is statistically superior to Bayesian (Kittler et al., 1998), Linear (Benediktsson et al., 1997) and ESNN (Lipnickas and Korbicz, 2004) methods, and achieves a comparable classification rate than MAJ (Xu et al., 1992) and Genetic (Cho, 1999).\",\"PeriodicalId\":218182,\"journal\":{\"name\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FITME.2008.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在多分类器组合中,如何选择一种有效的组合方法是一个非常关键的问题。将数据处理的分组方法(GMDH)理论引入到多分类器组合中,提出了一种新的分类器集成选择算法GAES。它能够自适应地从分类器池中选择合适的集成,确定基分类器之间的组合权值,并自动完成组合过程。我们在16个UCI数据集和4个ELENA数据集上对游戏进行了实验测试。结果表明,与常用的组合方法相比,GAES在统计上优于Bayesian (Kittler et al., 1998)、Linear (Benediktsson et al., 1997)和ESNN (Lipnickas and Korbicz, 2004)方法,并且与MAJ (Xu et al., 1992)和Genetic (Cho, 1999)的分类率相当。
Adaptive Selection of Classifier Ensemble Based on GMDH
In multiple classifiers combination, how to choose an effective combination method is a very critical issue. This article introduces group method of data handing (GMDH) theory into multiple classifiers combination, and proposes a novel algorithm GAES for classifier ensemble selection. It is able to select an appropriate ensemble from the classifier pool adaptively, determine the combination weights among base classifiers, and complete the combination process automatically. We experimentally test GAES over 16 UCI data sets and 4 ELENA data sets. The results show that compared with the commonly used combination methods, GAES is statistically superior to Bayesian (Kittler et al., 1998), Linear (Benediktsson et al., 1997) and ESNN (Lipnickas and Korbicz, 2004) methods, and achieves a comparable classification rate than MAJ (Xu et al., 1992) and Genetic (Cho, 1999).