{"title":"hecke型代数的菱形引理","authors":"Ben Elias","doi":"10.1090/tran/8554","DOIUrl":null,"url":null,"abstract":"In this paper we give a version of Bergman's diamond lemma which applies to certain monoidal categories presented by generators and relations. In particular, it applies to: the Coxeter presentation of the symmetric groups, the quiver Hecke algebras of Khovanov-Lauda-Rouquier, the Webster tensor product algebras, and various generalizations of these. We also give an extension of Manin-Schechtmann theory to non-reduced expressions.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A diamond lemma for Hecke-type algebras\",\"authors\":\"Ben Elias\",\"doi\":\"10.1090/tran/8554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give a version of Bergman's diamond lemma which applies to certain monoidal categories presented by generators and relations. In particular, it applies to: the Coxeter presentation of the symmetric groups, the quiver Hecke algebras of Khovanov-Lauda-Rouquier, the Webster tensor product algebras, and various generalizations of these. We also give an extension of Manin-Schechtmann theory to non-reduced expressions.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we give a version of Bergman's diamond lemma which applies to certain monoidal categories presented by generators and relations. In particular, it applies to: the Coxeter presentation of the symmetric groups, the quiver Hecke algebras of Khovanov-Lauda-Rouquier, the Webster tensor product algebras, and various generalizations of these. We also give an extension of Manin-Schechtmann theory to non-reduced expressions.