基于曲面几何显著性的三维人脸网格检测

Yaochen Li, Yuehu Liu, Yuanchu Wang, Zhengwang Wu, Yang Yang
{"title":"基于曲面几何显著性的三维人脸网格检测","authors":"Yaochen Li, Yuehu Liu, Yuanchu Wang, Zhengwang Wu, Yang Yang","doi":"10.1109/ICME.2011.6012122","DOIUrl":null,"url":null,"abstract":"This paper proposes a 3D facial mesh detection algorithm based on the geometric saliency of surface. Specifically, the geometric saliency of each vertex on 3D triangle mesh is measured by the combination of Gaussian-weighted curvature and spin-image correlation. Salient vertices with similar properties are clustered into regions on the saliency map, and represented as nodes by the graph model. To detect a 3D facial mesh, initialization and registration steps are applied to match each triangle in the graph model with a reference graph, corresponding to a 3D reference facial mesh. Furthermore, the match error between the graph model of the testing 3D mesh and the reference facial mesh is computed to classify face and non-face meshes. Experimental results demonstrate that the proposed algorithm is effective to detect 3D facial meshes and robust to facial expressions and geometric noises.","PeriodicalId":433997,"journal":{"name":"2011 IEEE International Conference on Multimedia and Expo","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D facial mesh detection using geometric saliency of surface\",\"authors\":\"Yaochen Li, Yuehu Liu, Yuanchu Wang, Zhengwang Wu, Yang Yang\",\"doi\":\"10.1109/ICME.2011.6012122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a 3D facial mesh detection algorithm based on the geometric saliency of surface. Specifically, the geometric saliency of each vertex on 3D triangle mesh is measured by the combination of Gaussian-weighted curvature and spin-image correlation. Salient vertices with similar properties are clustered into regions on the saliency map, and represented as nodes by the graph model. To detect a 3D facial mesh, initialization and registration steps are applied to match each triangle in the graph model with a reference graph, corresponding to a 3D reference facial mesh. Furthermore, the match error between the graph model of the testing 3D mesh and the reference facial mesh is computed to classify face and non-face meshes. Experimental results demonstrate that the proposed algorithm is effective to detect 3D facial meshes and robust to facial expressions and geometric noises.\",\"PeriodicalId\":433997,\"journal\":{\"name\":\"2011 IEEE International Conference on Multimedia and Expo\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2011.6012122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2011.6012122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于曲面几何显著性的三维人脸网格检测算法。具体而言,采用高斯加权曲率和自旋图像相关相结合的方法测量三维三角形网格上各顶点的几何显著性。具有相似属性的显著点聚在显著性图上的区域中,并由图模型表示为节点。为了检测三维人脸网格,通过初始化和配准步骤将图模型中的每个三角形与对应于三维参考人脸网格的参考图进行匹配。进一步,计算测试三维网格的图模型与参考人脸网格的匹配误差,对人脸和非人脸网格进行分类。实验结果表明,该算法能够有效地检测三维人脸网格,对面部表情和几何噪声具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D facial mesh detection using geometric saliency of surface
This paper proposes a 3D facial mesh detection algorithm based on the geometric saliency of surface. Specifically, the geometric saliency of each vertex on 3D triangle mesh is measured by the combination of Gaussian-weighted curvature and spin-image correlation. Salient vertices with similar properties are clustered into regions on the saliency map, and represented as nodes by the graph model. To detect a 3D facial mesh, initialization and registration steps are applied to match each triangle in the graph model with a reference graph, corresponding to a 3D reference facial mesh. Furthermore, the match error between the graph model of the testing 3D mesh and the reference facial mesh is computed to classify face and non-face meshes. Experimental results demonstrate that the proposed algorithm is effective to detect 3D facial meshes and robust to facial expressions and geometric noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信