Juha Kuutti, A. Oinonen
{"title":"Comparison of ASME XI and BS7910 Allowable Surface Flaw Size Evaluation Procedures in Piping Components","authors":"Juha Kuutti, A. Oinonen","doi":"10.1115/PVP2018-84276","DOIUrl":null,"url":null,"abstract":"This paper presents a failure assessment diagram (FAD) and crack size based comparison of the ASME BVPC Section XI Nonmandatory Appendix C and Nonmandatory Appendix H and the British Standard BS 7910:2013 Option 1 assessment methods. The Section XI appendix C evaluates the acceptability of a flaw by determining the expected failure mechanism and by comparing the flaw size with allowable flaw size limits or by comparing the applied stress to the allowable stress. The Section XI appendix H and BS7910 employ a FAD based approach that simultaneously considers brittle fracture, ductile crack extension prior to reaching the limit load and exceedance of the limit load due to the gross plasticity in the cross section. The assessment is performed by calculating the assessment point coordinates and evaluating whether the point is located on the safe side of the FAD line. The three methods are compared for simplified austenitic and ferritic pipes under internal pressure and bending loads with postulated axial and circumferential internal surface flaws. The methods are applied to generate limiting flaw size diagrams for each component under the specified loads. Additionally, the limiting flaw size results are presented in the FAD plots. To maintain comparability between the results, identical input data are used with each analysis approach but using the method-specific formulae.\n The performed comparison shows that most often the limiting state is governed by the 75 % flaw depth rule in Section XI article IWB-3640. The largest differences between the methods are observed for cracks with a high length to depth ratio. The difference to the tabulated allowable planar flaws in Article IWB-3514 is typically high. When increasing the applied load to values approaching the limit load, differences in the limiting flaw sizes between the methods are observed, mostly due to the different limit load models and different assumptions on the utilization of the post-yield capacity.\n Besides the presented flaw size comparison, the paper presents a quick tool suitable for ranking different piping segments based on failure potential and for quick scoping evaluations of indications found in inspections. The case specific scoping tool is a map of yearly flaw size lines providing the information on which flaw sizes would grow to the final limiting size in a specified timeframe.","PeriodicalId":384066,"journal":{"name":"Volume 3B: Design and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过计算评估点坐标,评估点是否位于FAD线的安全侧来进行评估。对简化奥氏体和铁素体管道在假定轴向和周向内表面缺陷的压力和弯曲载荷作用下的三种方法进行了比较。应用该方法生成了各构件在规定载荷下的极限缺陷尺寸图。此外,在FAD图中给出了极限缺陷尺寸的结果。为了保持结果之间的可比性,每种分析方法使用相同的输入数据,但使用特定于方法的公式。对于长深比较大的裂缝,两种方法之间的差异最大。与IWB-3514中列出的允许平面缺陷的差异通常很高。当外加荷载增加到接近极限荷载时,两种方法的极限缺陷尺寸存在差异,这主要是由于不同的极限荷载模型和对屈服后能力利用的不同假设。除了缺陷尺寸的比较外,本文还提出了一种快速的工具,适用于根据失效潜力对不同管道段进行排序,并适用于对检查中发现的指示进行快速范围评估。案例特定的范围界定工具是一个每年缺陷尺寸线的地图,提供了在指定的时间框架内缺陷尺寸将增长到最终限制尺寸的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of ASME XI and BS7910 Allowable Surface Flaw Size Evaluation Procedures in Piping Components
This paper presents a failure assessment diagram (FAD) and crack size based comparison of the ASME BVPC Section XI Nonmandatory Appendix C and Nonmandatory Appendix H and the British Standard BS 7910:2013 Option 1 assessment methods. The Section XI appendix C evaluates the acceptability of a flaw by determining the expected failure mechanism and by comparing the flaw size with allowable flaw size limits or by comparing the applied stress to the allowable stress. The Section XI appendix H and BS7910 employ a FAD based approach that simultaneously considers brittle fracture, ductile crack extension prior to reaching the limit load and exceedance of the limit load due to the gross plasticity in the cross section. The assessment is performed by calculating the assessment point coordinates and evaluating whether the point is located on the safe side of the FAD line. The three methods are compared for simplified austenitic and ferritic pipes under internal pressure and bending loads with postulated axial and circumferential internal surface flaws. The methods are applied to generate limiting flaw size diagrams for each component under the specified loads. Additionally, the limiting flaw size results are presented in the FAD plots. To maintain comparability between the results, identical input data are used with each analysis approach but using the method-specific formulae. The performed comparison shows that most often the limiting state is governed by the 75 % flaw depth rule in Section XI article IWB-3640. The largest differences between the methods are observed for cracks with a high length to depth ratio. The difference to the tabulated allowable planar flaws in Article IWB-3514 is typically high. When increasing the applied load to values approaching the limit load, differences in the limiting flaw sizes between the methods are observed, mostly due to the different limit load models and different assumptions on the utilization of the post-yield capacity. Besides the presented flaw size comparison, the paper presents a quick tool suitable for ranking different piping segments based on failure potential and for quick scoping evaluations of indications found in inspections. The case specific scoping tool is a map of yearly flaw size lines providing the information on which flaw sizes would grow to the final limiting size in a specified timeframe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信