基于微分进化的自适应收缩函数优化

K. K. Gupta, R. Gupta
{"title":"基于微分进化的自适应收缩函数优化","authors":"K. K. Gupta, R. Gupta","doi":"10.1109/ADCOM.2007.31","DOIUrl":null,"url":null,"abstract":"In this paper, a new wavelet shrinkage denoising algorithm is presented. The algorithm uses wavelet transform (WT) to extract information about sharp variation in multiresolution images and applies shrinkage function adapting the image features. The features are detected by energy of neighboring pixels, whereas in standard wavelet methods, the empirical wavelet coefficients shrink pixel by pixel, on the basis of their individual magnitude. The shrinkage function is optimized by differential Evolution (DE).","PeriodicalId":185608,"journal":{"name":"15th International Conference on Advanced Computing and Communications (ADCOM 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Shrinkage Function Optimization by Differential Evolution\",\"authors\":\"K. K. Gupta, R. Gupta\",\"doi\":\"10.1109/ADCOM.2007.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new wavelet shrinkage denoising algorithm is presented. The algorithm uses wavelet transform (WT) to extract information about sharp variation in multiresolution images and applies shrinkage function adapting the image features. The features are detected by energy of neighboring pixels, whereas in standard wavelet methods, the empirical wavelet coefficients shrink pixel by pixel, on the basis of their individual magnitude. The shrinkage function is optimized by differential Evolution (DE).\",\"PeriodicalId\":185608,\"journal\":{\"name\":\"15th International Conference on Advanced Computing and Communications (ADCOM 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th International Conference on Advanced Computing and Communications (ADCOM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADCOM.2007.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th International Conference on Advanced Computing and Communications (ADCOM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2007.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的小波收缩去噪算法。该算法利用小波变换提取多分辨率图像的急剧变化信息,并应用适应图像特征的收缩函数。这些特征是通过相邻像素的能量来检测的,而在标准小波方法中,经验小波系数是根据它们各自的大小逐像素缩小的。采用差分演化法对收缩函数进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Shrinkage Function Optimization by Differential Evolution
In this paper, a new wavelet shrinkage denoising algorithm is presented. The algorithm uses wavelet transform (WT) to extract information about sharp variation in multiresolution images and applies shrinkage function adapting the image features. The features are detected by energy of neighboring pixels, whereas in standard wavelet methods, the empirical wavelet coefficients shrink pixel by pixel, on the basis of their individual magnitude. The shrinkage function is optimized by differential Evolution (DE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信