基于MapReduce框架的分布式网管架构

R. A. Ammal, Kumar K. B. Aneesh
{"title":"基于MapReduce框架的分布式网管架构","authors":"R. A. Ammal, Kumar K. B. Aneesh","doi":"10.1109/INM.2011.5990662","DOIUrl":null,"url":null,"abstract":"In this paper we describe an architecture for a Distributed Network Management System (NMS) for large, geographically spread, heterogeneous networks, integrating Map Reduce framework along with the prevalent Service Oriented Architecture (SOA). MapReduce is the software framework popularized by Google to support distributed computing on large data sets on clusters of computers. In a nutshell, it is a way to take a big task and divide it into discrete tasks that can be done in parallel. This new architecture enhances the robustness, scalability and reliability of NMS. We also discuss the implementation of this architecture using Hadoop, the open source implementation of MapReduce Framework","PeriodicalId":433520,"journal":{"name":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MapReduce framework based distributed NMS architecture\",\"authors\":\"R. A. Ammal, Kumar K. B. Aneesh\",\"doi\":\"10.1109/INM.2011.5990662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe an architecture for a Distributed Network Management System (NMS) for large, geographically spread, heterogeneous networks, integrating Map Reduce framework along with the prevalent Service Oriented Architecture (SOA). MapReduce is the software framework popularized by Google to support distributed computing on large data sets on clusters of computers. In a nutshell, it is a way to take a big task and divide it into discrete tasks that can be done in parallel. This new architecture enhances the robustness, scalability and reliability of NMS. We also discuss the implementation of this architecture using Hadoop, the open source implementation of MapReduce Framework\",\"PeriodicalId\":433520,\"journal\":{\"name\":\"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2011.5990662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2011.5990662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了一个分布式网络管理系统(NMS)的体系结构,用于大型、地理分布的异构网络,将Map Reduce框架与流行的面向服务的体系结构(SOA)集成在一起。MapReduce是谷歌推广的软件框架,用于支持在计算机集群上对大型数据集进行分布式计算。简而言之,它是一种将一项大任务划分为可以并行完成的离散任务的方法。这种新的体系结构增强了NMS的健壮性、可伸缩性和可靠性。我们还讨论了使用Hadoop (MapReduce框架的开源实现)实现该架构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MapReduce framework based distributed NMS architecture
In this paper we describe an architecture for a Distributed Network Management System (NMS) for large, geographically spread, heterogeneous networks, integrating Map Reduce framework along with the prevalent Service Oriented Architecture (SOA). MapReduce is the software framework popularized by Google to support distributed computing on large data sets on clusters of computers. In a nutshell, it is a way to take a big task and divide it into discrete tasks that can be done in parallel. This new architecture enhances the robustness, scalability and reliability of NMS. We also discuss the implementation of this architecture using Hadoop, the open source implementation of MapReduce Framework
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信