基于分布式粒子群优化的二阶潜在因子模型

Jialiang Wang, Yurong Zhong, Weiling Li
{"title":"基于分布式粒子群优化的二阶潜在因子模型","authors":"Jialiang Wang, Yurong Zhong, Weiling Li","doi":"10.1109/ICNSC55942.2022.10004102","DOIUrl":null,"url":null,"abstract":"Latent Factor (LF) models are effective in representing high-dimension and sparse (HiDS) data via low-rank matrices approximation. Building an LF model is a large-scale non-convex problem. Hessian-free (HF) optimization is an efficient method to utilizing second-order information of an LF model's objective function and it has been utilized to optimize second-order LF (SLF) model. However, the low-rank representation ability of a SLF model heavily relies on its multiple hyperparameters. Determining these hyperparameters is time-consuming and it largely reduces the practicability of an SLF model. To address this issue, a distributed adaptive SLF (DASLF) model is proposed in this work. It realizes hyperparameter self-adaptation with a distributed particle swarm optimizer (DPSO), which is gradient-free and parallelized. Experiments on real HiDS data sets indicate that DASLF model has a competitive advantage over state-of-the-art models in data representation ability.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed-Particle-Swarm-Optimization-Incorporated Second-order Latent Factor Model\",\"authors\":\"Jialiang Wang, Yurong Zhong, Weiling Li\",\"doi\":\"10.1109/ICNSC55942.2022.10004102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent Factor (LF) models are effective in representing high-dimension and sparse (HiDS) data via low-rank matrices approximation. Building an LF model is a large-scale non-convex problem. Hessian-free (HF) optimization is an efficient method to utilizing second-order information of an LF model's objective function and it has been utilized to optimize second-order LF (SLF) model. However, the low-rank representation ability of a SLF model heavily relies on its multiple hyperparameters. Determining these hyperparameters is time-consuming and it largely reduces the practicability of an SLF model. To address this issue, a distributed adaptive SLF (DASLF) model is proposed in this work. It realizes hyperparameter self-adaptation with a distributed particle swarm optimizer (DPSO), which is gradient-free and parallelized. Experiments on real HiDS data sets indicate that DASLF model has a competitive advantage over state-of-the-art models in data representation ability.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

潜在因子(LF)模型是一种通过低秩矩阵逼近表示高维稀疏数据的有效方法。LF模型的建立是一个大规模的非凸问题。无Hessian-free (HF)优化是利用LF模型目标函数二阶信息的一种有效方法,已被用于优化二阶LF (SLF)模型。然而,SLF模型的低秩表示能力在很大程度上依赖于它的多个超参数。确定这些超参数非常耗时,并且在很大程度上降低了SLF模型的实用性。为了解决这个问题,本文提出了一种分布式自适应SLF (DASLF)模型。该算法采用无梯度并行化的分布式粒子群优化器(DPSO)实现超参数自适应。在真实HiDS数据集上的实验表明,DASLF模型在数据表示能力方面比最先进的模型具有竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed-Particle-Swarm-Optimization-Incorporated Second-order Latent Factor Model
Latent Factor (LF) models are effective in representing high-dimension and sparse (HiDS) data via low-rank matrices approximation. Building an LF model is a large-scale non-convex problem. Hessian-free (HF) optimization is an efficient method to utilizing second-order information of an LF model's objective function and it has been utilized to optimize second-order LF (SLF) model. However, the low-rank representation ability of a SLF model heavily relies on its multiple hyperparameters. Determining these hyperparameters is time-consuming and it largely reduces the practicability of an SLF model. To address this issue, a distributed adaptive SLF (DASLF) model is proposed in this work. It realizes hyperparameter self-adaptation with a distributed particle swarm optimizer (DPSO), which is gradient-free and parallelized. Experiments on real HiDS data sets indicate that DASLF model has a competitive advantage over state-of-the-art models in data representation ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信