具有部分可观察状态切换的可赎回或有债权的动态估值

Kimitoshi Sato, K. Sawaki
{"title":"具有部分可观察状态切换的可赎回或有债权的动态估值","authors":"Kimitoshi Sato, K. Sawaki","doi":"10.2139/ssrn.3284489","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a model for valuing callable financial securities when the underlying asset price dynamic is unobservable but can be partially observed by receiving a signal stochastically related to the state of the real economy. In callable securities, both the issuer and the investor have the right to call. We formulate this problem as a coupled stochastic game for the optimal stopping problem within a partially observable Markov decision process. We show that there exists a unique optimal value for the callable contingent claim, and it is a unique fixed point of a contraction mapping. We derive analytical properties of the optimal stopping rules for the issuer and the investor under two types (put and call) of general payoff functions. We provide a numerical example to illustrate specific stopping boundaries for each player; this is done by specifying the payoff function of the callable securities.","PeriodicalId":319981,"journal":{"name":"ERN: Stochastic & Dynamic Games (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Dynamic Valuation of Callable Contingent Claims With a Partially Observable Regime Switch\",\"authors\":\"Kimitoshi Sato, K. Sawaki\",\"doi\":\"10.2139/ssrn.3284489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a model for valuing callable financial securities when the underlying asset price dynamic is unobservable but can be partially observed by receiving a signal stochastically related to the state of the real economy. In callable securities, both the issuer and the investor have the right to call. We formulate this problem as a coupled stochastic game for the optimal stopping problem within a partially observable Markov decision process. We show that there exists a unique optimal value for the callable contingent claim, and it is a unique fixed point of a contraction mapping. We derive analytical properties of the optimal stopping rules for the issuer and the investor under two types (put and call) of general payoff functions. We provide a numerical example to illustrate specific stopping boundaries for each player; this is done by specifying the payoff function of the callable securities.\",\"PeriodicalId\":319981,\"journal\":{\"name\":\"ERN: Stochastic & Dynamic Games (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stochastic & Dynamic Games (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3284489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stochastic & Dynamic Games (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3284489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了当基础资产价格动态不可观察但可以通过接收与实体经济状态随机相关的信号来部分观察到的情况下,可赎回金融证券的估值模型。在可赎回证券中,发行人和投资者都有赎回权。我们将这一问题表述为部分可观察马尔可夫决策过程中最优停止问题的耦合随机对策。我们证明了可调用或有权利要求存在唯一最优值,并且它是一个收缩映射的唯一不动点。在两种类型(看跌和看涨)的一般收益函数下,给出了发行者和投资者最优止损规则的解析性质。我们提供了一个数值例子来说明每个玩家的具体停止边界;这是通过指定可赎回证券的支付函数来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dynamic Valuation of Callable Contingent Claims With a Partially Observable Regime Switch
In this paper, we consider a model for valuing callable financial securities when the underlying asset price dynamic is unobservable but can be partially observed by receiving a signal stochastically related to the state of the real economy. In callable securities, both the issuer and the investor have the right to call. We formulate this problem as a coupled stochastic game for the optimal stopping problem within a partially observable Markov decision process. We show that there exists a unique optimal value for the callable contingent claim, and it is a unique fixed point of a contraction mapping. We derive analytical properties of the optimal stopping rules for the issuer and the investor under two types (put and call) of general payoff functions. We provide a numerical example to illustrate specific stopping boundaries for each player; this is done by specifying the payoff function of the callable securities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信