基于图神经网络的图的半监督标签传播社团检测

S. Muppidi, Anupama Angadi, Satya Keerthi Gorripati
{"title":"基于图神经网络的图的半监督标签传播社团检测","authors":"S. Muppidi, Anupama Angadi, Satya Keerthi Gorripati","doi":"10.1109/ICAITPR51569.2022.9844211","DOIUrl":null,"url":null,"abstract":"The Graph Neural Network is a fairly innovative concept which permits neural networks to function on random graphs. As unbounded problem structures are universal in real-world scenarios and can be best denoted by graphs, Graph Neural Networks suggests new exhilarating applications and further simplified latent for machine learning wholly, but also noteworthy enhancement of performance in a deep learning domain. Graph Neural Networks are variant of Graph convolution networks can function sprightly on graphs. One of the well-known tasks attempted with this new skill is graph partitioning. Important characteristic of community is to discover graph nodes are with same interests and keep them strongly connected to extract groups for numerous reasons. We demonstrate a semi-supervised learning on graph data for solving community detection. In a number of trials on graph partitions we proved that our framework outperforms traditional ones.","PeriodicalId":262409,"journal":{"name":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Label Propagation Community Detection on Graphs with Graph Neural Network\",\"authors\":\"S. Muppidi, Anupama Angadi, Satya Keerthi Gorripati\",\"doi\":\"10.1109/ICAITPR51569.2022.9844211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Graph Neural Network is a fairly innovative concept which permits neural networks to function on random graphs. As unbounded problem structures are universal in real-world scenarios and can be best denoted by graphs, Graph Neural Networks suggests new exhilarating applications and further simplified latent for machine learning wholly, but also noteworthy enhancement of performance in a deep learning domain. Graph Neural Networks are variant of Graph convolution networks can function sprightly on graphs. One of the well-known tasks attempted with this new skill is graph partitioning. Important characteristic of community is to discover graph nodes are with same interests and keep them strongly connected to extract groups for numerous reasons. We demonstrate a semi-supervised learning on graph data for solving community detection. In a number of trials on graph partitions we proved that our framework outperforms traditional ones.\",\"PeriodicalId\":262409,\"journal\":{\"name\":\"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAITPR51569.2022.9844211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAITPR51569.2022.9844211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络是一个相当创新的概念,它允许神经网络在随机图上运行。由于无界问题结构在现实场景中是普遍存在的,并且可以最好地用图来表示,图神经网络提出了新的令人振奋的应用,并进一步简化了机器学习的整体潜力,但也值得注意的是在深度学习领域的性能增强。图神经网络是图卷积网络的一种变体,可以在图上灵活地运行。使用这种新技能尝试的一个众所周知的任务是图划分。社区的重要特征是发现具有相同兴趣的图节点,并出于多种原因使它们与抽取组保持紧密联系。我们展示了一种基于图数据的半监督学习,用于解决社区检测问题。在对图分区的大量试验中,我们证明了我们的框架优于传统框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Label Propagation Community Detection on Graphs with Graph Neural Network
The Graph Neural Network is a fairly innovative concept which permits neural networks to function on random graphs. As unbounded problem structures are universal in real-world scenarios and can be best denoted by graphs, Graph Neural Networks suggests new exhilarating applications and further simplified latent for machine learning wholly, but also noteworthy enhancement of performance in a deep learning domain. Graph Neural Networks are variant of Graph convolution networks can function sprightly on graphs. One of the well-known tasks attempted with this new skill is graph partitioning. Important characteristic of community is to discover graph nodes are with same interests and keep them strongly connected to extract groups for numerous reasons. We demonstrate a semi-supervised learning on graph data for solving community detection. In a number of trials on graph partitions we proved that our framework outperforms traditional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信