{"title":"基于多源异构数据融合的股价预测多目标决策模型","authors":"N. Metawa, Maha Mutawea","doi":"10.54216/fpa.090105","DOIUrl":null,"url":null,"abstract":"Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"9 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Decision Making Model for Stock Price Prediction Using Multi-source Heterogeneous Data Fusion\",\"authors\":\"N. Metawa, Maha Mutawea\",\"doi\":\"10.54216/fpa.090105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"9 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.090105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.090105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective Decision Making Model for Stock Price Prediction Using Multi-source Heterogeneous Data Fusion
Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.