基于多源异构数据融合的股价预测多目标决策模型

N. Metawa, Maha Mutawea
{"title":"基于多源异构数据融合的股价预测多目标决策模型","authors":"N. Metawa, Maha Mutawea","doi":"10.54216/fpa.090105","DOIUrl":null,"url":null,"abstract":"Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"9 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Decision Making Model for Stock Price Prediction Using Multi-source Heterogeneous Data Fusion\",\"authors\":\"N. Metawa, Maha Mutawea\",\"doi\":\"10.54216/fpa.090105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.\",\"PeriodicalId\":269527,\"journal\":{\"name\":\"Fusion: Practice and Applications\",\"volume\":\"9 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion: Practice and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/fpa.090105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.090105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证券交易所是作为经济的重要组成部分发展起来的,因为它们可以促进金融和资本收益。股票市场是买卖股票的经济联系网络。股票市场预测(SMP)对投资者非常有用。一个有效的股票价格预测为股东提供了适当的帮助,使他们在出售或购买股票时做出适当的决定。机器学习(ML)和情感分析(SA)在微博网站数据上的应用是一种著名的SMP方法。然而,股票市场领域的异构数据融合是一个很大的挑战。本文介绍了一种有效的基于机器学习的微博情绪分析的猫群优化方法。该模型通过调查社交媒体情绪来预测SPP。首先,该模型执行数据预处理和手套词嵌入方法。其次,利用加权极值学习机方法对SPP进行情感分类,最后利用CSO系统对WELM模型相关参数进行最优调整。利用微博数据对该方法进行了实验验证。结果表明,该方法优于以往的研究方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective Decision Making Model for Stock Price Prediction Using Multi-source Heterogeneous Data Fusion
Stock exchanges are developed as an essential component of economies, as they can promote financial and capital gain. The stock market is network of economic connections where share is bought and sold. Stock Market Prediction (SMP) is quite useful to investors. An effective forecast of stock prices is offer shareholders with suitable help in making appropriate decisions regarding if sell or purchase shares. The employ of Machine Learning (ML) and Sentiment Analysis (SA) on data in microblogging sites are developed as a famous approach to SMP. However, the heterogenous data fusion in stock market field is a big challenge. This paper introduces an effective Cat Swarm Optimization with Machine Learning Enabled Microblogging Sentiment Analysis for Stock Price Prediction technique. The presented model investigates the social media sentiments to foresee SPP. Firstly, the proposed model executes data pre-processing and Glove word embedding approach. Next, the weighted extreme learning machine approach was utilized for the classification of sentiments for SPP. Lastly, the CSO system was exploited for optimal adjustment of the parameters related to the WELM model. The experimental validation of the proposed approach was executed using microblogging data. The results show that the proposed method outperforms the previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信