一种基于生成对抗网络的隐写新方法

Hiroshi Naito, Qiangfu Zhao
{"title":"一种基于生成对抗网络的隐写新方法","authors":"Hiroshi Naito, Qiangfu Zhao","doi":"10.1109/ICAwST.2019.8923579","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new steganography method based on generative adversarial networks (GAN). In using steganography, the third party can extract the embedded secret easily by comparing the cover data and the hidden message if the cover data are publicly available (e.g. accessible in the internet). To avoid this problem, we need a unique cover datum for each piece of secret messages. As the cover data, we focus on digital images in this study. To make a lot of unique and natural looking images, we can use GAN. Actually, training of GAN results in two neural networks namely the generator and the discriminator. The generator makes virtual images, and the discriminator evaluates the naturalness of the virtual images. In the proposed method, we use both the generator and the discriminator to guarantee the naturalness of the cover data on the sender side, and to filter out stego data sent from malicious third party. In this experiments, we first confirmed the capability of the generator for producing unlimited number of cover data, and then investigated the possibility of naturalness checking using the discriminator. We believe that the proposed method can provide a better way for information hiding.","PeriodicalId":156538,"journal":{"name":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A New Steganography Method Based on Generative Adversarial Networks\",\"authors\":\"Hiroshi Naito, Qiangfu Zhao\",\"doi\":\"10.1109/ICAwST.2019.8923579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new steganography method based on generative adversarial networks (GAN). In using steganography, the third party can extract the embedded secret easily by comparing the cover data and the hidden message if the cover data are publicly available (e.g. accessible in the internet). To avoid this problem, we need a unique cover datum for each piece of secret messages. As the cover data, we focus on digital images in this study. To make a lot of unique and natural looking images, we can use GAN. Actually, training of GAN results in two neural networks namely the generator and the discriminator. The generator makes virtual images, and the discriminator evaluates the naturalness of the virtual images. In the proposed method, we use both the generator and the discriminator to guarantee the naturalness of the cover data on the sender side, and to filter out stego data sent from malicious third party. In this experiments, we first confirmed the capability of the generator for producing unlimited number of cover data, and then investigated the possibility of naturalness checking using the discriminator. We believe that the proposed method can provide a better way for information hiding.\",\"PeriodicalId\":156538,\"journal\":{\"name\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAwST.2019.8923579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAwST.2019.8923579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的基于生成对抗网络(GAN)的隐写方法。在使用隐写术时,如果隐写数据是公开的(例如在互联网上可访问),第三方可以通过比较隐写数据和隐藏信息轻松提取嵌入的秘密。为了避免这个问题,我们需要为每条秘密消息提供一个唯一的覆盖基准。作为覆盖数据,本研究的重点是数字图像。为了制作许多独特而自然的图像,我们可以使用GAN。实际上,GAN的训练结果是两个神经网络,即生成器和鉴别器。生成器生成虚拟图像,鉴别器评估虚拟图像的自然度。在该方法中,我们使用了生成器和鉴别器来保证发送端覆盖数据的自然性,并过滤掉来自恶意第三方发送的隐藏数据。在本实验中,我们首先证实了生成器产生无限数量的覆盖数据的能力,然后研究了使用鉴别器进行自然度检查的可能性。我们相信该方法可以为信息隐藏提供一种更好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Steganography Method Based on Generative Adversarial Networks
In this paper, we propose a new steganography method based on generative adversarial networks (GAN). In using steganography, the third party can extract the embedded secret easily by comparing the cover data and the hidden message if the cover data are publicly available (e.g. accessible in the internet). To avoid this problem, we need a unique cover datum for each piece of secret messages. As the cover data, we focus on digital images in this study. To make a lot of unique and natural looking images, we can use GAN. Actually, training of GAN results in two neural networks namely the generator and the discriminator. The generator makes virtual images, and the discriminator evaluates the naturalness of the virtual images. In the proposed method, we use both the generator and the discriminator to guarantee the naturalness of the cover data on the sender side, and to filter out stego data sent from malicious third party. In this experiments, we first confirmed the capability of the generator for producing unlimited number of cover data, and then investigated the possibility of naturalness checking using the discriminator. We believe that the proposed method can provide a better way for information hiding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信