大规模问题的自适应agent响应式作业车间调度

T. Gabel, Martin A. Riedmiller
{"title":"大规模问题的自适应agent响应式作业车间调度","authors":"T. Gabel, Martin A. Riedmiller","doi":"10.1109/SCIS.2007.367699","DOIUrl":null,"url":null,"abstract":"Most approaches to tackle job-shop scheduling problems assume complete task knowledge and search for a centralized solution. In this work, we adopt an alternative view on scheduling problems where each resource is equipped with an adaptive agent that, independent of other agents, makes job dispatching decisions based on its local view on the plant and employs reinforcement learning to improve its dispatching strategy. We delineate which extensions are necessary to render this learning approach applicable to job-shop scheduling problems of current standards of difficulty and present results of an adequate empirical evaluation","PeriodicalId":184726,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Scheduling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Scaling Adaptive Agent-Based Reactive Job-Shop Scheduling to Large-Scale Problems\",\"authors\":\"T. Gabel, Martin A. Riedmiller\",\"doi\":\"10.1109/SCIS.2007.367699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most approaches to tackle job-shop scheduling problems assume complete task knowledge and search for a centralized solution. In this work, we adopt an alternative view on scheduling problems where each resource is equipped with an adaptive agent that, independent of other agents, makes job dispatching decisions based on its local view on the plant and employs reinforcement learning to improve its dispatching strategy. We delineate which extensions are necessary to render this learning approach applicable to job-shop scheduling problems of current standards of difficulty and present results of an adequate empirical evaluation\",\"PeriodicalId\":184726,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Scheduling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCIS.2007.367699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCIS.2007.367699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

大多数解决作业车间调度问题的方法都假定完整的任务知识并寻找集中的解决方案。在这项工作中,我们采用了另一种调度问题的观点,其中每个资源都配备了一个自适应智能体,该智能体独立于其他智能体,根据其对工厂的局部视图做出作业调度决策,并使用强化学习来改进其调度策略。我们描述了哪些扩展是必要的,以使这种学习方法适用于当前难度标准的车间作业调度问题,并给出了充分的实证评估结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling Adaptive Agent-Based Reactive Job-Shop Scheduling to Large-Scale Problems
Most approaches to tackle job-shop scheduling problems assume complete task knowledge and search for a centralized solution. In this work, we adopt an alternative view on scheduling problems where each resource is equipped with an adaptive agent that, independent of other agents, makes job dispatching decisions based on its local view on the plant and employs reinforcement learning to improve its dispatching strategy. We delineate which extensions are necessary to render this learning approach applicable to job-shop scheduling problems of current standards of difficulty and present results of an adequate empirical evaluation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信