{"title":"一种使用遗传算法、语义Web技术和本体创建和推荐学习对象的方法","authors":"C. B. Júnior, F. Dorça","doi":"10.5753/CBIE.SBIE.2018.1533","DOIUrl":null,"url":null,"abstract":"E-learning is an electronic teaching model that can be adapted to student's learning styles. The lack of learning objects (LOs) that can be recommended to students is an open problem. Another challenge is the personalized recommendation of LOs. To solve them, we have implemented an approach that uses Wikipedia content to create new educational resources considering an ontology which models students and LOs. The problem of recommending LOs is formalized, and then a genetic algorithm (GA) is presented to solve it. The tests carried out on a prototype guarantee the viability of this approach to solve these problems, showing that the GA is superior to a random algorithm. Palavras-chave: Ensino Eletrônico, Web Semântica, Objetos de Aprendizagem","PeriodicalId":231173,"journal":{"name":"Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Uma Abordagem para a Criação e Recomendação de Objetos de Aprendizagem usando um Algoritmo Genético, Tecnologias da Web Semântica e uma Ontologia\",\"authors\":\"C. B. Júnior, F. Dorça\",\"doi\":\"10.5753/CBIE.SBIE.2018.1533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-learning is an electronic teaching model that can be adapted to student's learning styles. The lack of learning objects (LOs) that can be recommended to students is an open problem. Another challenge is the personalized recommendation of LOs. To solve them, we have implemented an approach that uses Wikipedia content to create new educational resources considering an ontology which models students and LOs. The problem of recommending LOs is formalized, and then a genetic algorithm (GA) is presented to solve it. The tests carried out on a prototype guarantee the viability of this approach to solve these problems, showing that the GA is superior to a random algorithm. Palavras-chave: Ensino Eletrônico, Web Semântica, Objetos de Aprendizagem\",\"PeriodicalId\":231173,\"journal\":{\"name\":\"Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/CBIE.SBIE.2018.1533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIX Simpósio Brasileiro de Informática na Educação (SBIE 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/CBIE.SBIE.2018.1533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
E-learning是一种能够适应学生学习方式的电子教学模式。缺乏可以推荐给学生的学习对象(LOs)是一个悬而未决的问题。另一个挑战是LOs的个性化推荐。为了解决这些问题,我们实现了一种方法,该方法使用维基百科内容来创建新的教育资源,并考虑对学生和LOs建模的本体。首先形式化了LOs推荐问题,然后提出了一种遗传算法(GA)来解决该问题。在一个原型上进行的测试保证了该方法解决这些问题的可行性,表明遗传算法优于随机算法。Palavras-chave: Ensino Eletrônico, Web sem ntica, Objetos de Aprendizagem
Uma Abordagem para a Criação e Recomendação de Objetos de Aprendizagem usando um Algoritmo Genético, Tecnologias da Web Semântica e uma Ontologia
E-learning is an electronic teaching model that can be adapted to student's learning styles. The lack of learning objects (LOs) that can be recommended to students is an open problem. Another challenge is the personalized recommendation of LOs. To solve them, we have implemented an approach that uses Wikipedia content to create new educational resources considering an ontology which models students and LOs. The problem of recommending LOs is formalized, and then a genetic algorithm (GA) is presented to solve it. The tests carried out on a prototype guarantee the viability of this approach to solve these problems, showing that the GA is superior to a random algorithm. Palavras-chave: Ensino Eletrônico, Web Semântica, Objetos de Aprendizagem