Python中的eeg - fmri神经成像交叉模态合成

David Calhas
{"title":"Python中的eeg - fmri神经成像交叉模态合成","authors":"David Calhas","doi":"10.25080/gerudo-f2bc6f59-007","DOIUrl":null,"url":null,"abstract":"—Electroencepholography (EEG) and functional magnetic resonance imaging (fMRI) are two ways of recording brain activity; the former provides good time resolution but poor spatial resolution, while the converse is true for the latter. Recently, deep neural network models have been developed that can synthesize fMRI activity from EEG signals, and vice versa. Because these generative models simulate data, they make it easier for neuroscientists to test ideas about how EEG and fMRI signals relate to each other, and what both signals tell us about how the brain controls behavior. To make it easier for researchers to access these models, and to standardize how they are used, we developed a Python package, EEG-to-fMRI, which provides cross modal neuroimaging synthesis functionalities. This is the first open source software enabling neuroimaging synthesis. Our main focus is for this package to help neuroscience, machine learning, and health care communities. This study gives an in-depth description of this package, along with the theoretical foundations and respective results.","PeriodicalId":364654,"journal":{"name":"Proceedings of the Python in Science Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-to-fMRI Neuroimaging Cross Modal Synthesis in Python\",\"authors\":\"David Calhas\",\"doi\":\"10.25080/gerudo-f2bc6f59-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Electroencepholography (EEG) and functional magnetic resonance imaging (fMRI) are two ways of recording brain activity; the former provides good time resolution but poor spatial resolution, while the converse is true for the latter. Recently, deep neural network models have been developed that can synthesize fMRI activity from EEG signals, and vice versa. Because these generative models simulate data, they make it easier for neuroscientists to test ideas about how EEG and fMRI signals relate to each other, and what both signals tell us about how the brain controls behavior. To make it easier for researchers to access these models, and to standardize how they are used, we developed a Python package, EEG-to-fMRI, which provides cross modal neuroimaging synthesis functionalities. This is the first open source software enabling neuroimaging synthesis. Our main focus is for this package to help neuroscience, machine learning, and health care communities. This study gives an in-depth description of this package, along with the theoretical foundations and respective results.\",\"PeriodicalId\":364654,\"journal\":{\"name\":\"Proceedings of the Python in Science Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Python in Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25080/gerudo-f2bc6f59-007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Python in Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25080/gerudo-f2bc6f59-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-脑电图(EEG)和功能性磁共振成像(fMRI)是记录大脑活动的两种方法;前者具有较好的时间分辨率,但空间分辨率较差,而后者则相反。最近,深度神经网络模型已经被开发出来,可以从EEG信号合成fMRI活动,反之亦然。因为这些生成模型模拟数据,它们使神经科学家更容易测试脑电图和功能磁共振成像信号之间的关系,以及这两个信号告诉我们大脑是如何控制行为的。为了使研究人员更容易访问这些模型,并标准化它们的使用方式,我们开发了一个Python包,EEG-to-fMRI,它提供了跨模态神经成像合成功能。这是第一个实现神经成像合成的开源软件。我们的主要重点是让这个软件包帮助神经科学、机器学习和医疗保健社区。本研究对该包进行了深入的描述,并给出了理论基础和各自的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG-to-fMRI Neuroimaging Cross Modal Synthesis in Python
—Electroencepholography (EEG) and functional magnetic resonance imaging (fMRI) are two ways of recording brain activity; the former provides good time resolution but poor spatial resolution, while the converse is true for the latter. Recently, deep neural network models have been developed that can synthesize fMRI activity from EEG signals, and vice versa. Because these generative models simulate data, they make it easier for neuroscientists to test ideas about how EEG and fMRI signals relate to each other, and what both signals tell us about how the brain controls behavior. To make it easier for researchers to access these models, and to standardize how they are used, we developed a Python package, EEG-to-fMRI, which provides cross modal neuroimaging synthesis functionalities. This is the first open source software enabling neuroimaging synthesis. Our main focus is for this package to help neuroscience, machine learning, and health care communities. This study gives an in-depth description of this package, along with the theoretical foundations and respective results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信