一种具有最优速率和较少子分组的D2D编码缓存设计框架

Xiang Zhang, Xianfeng Terry Yang, Mingyue Ji
{"title":"一种具有最优速率和较少子分组的D2D编码缓存设计框架","authors":"Xiang Zhang, Xianfeng Terry Yang, Mingyue Ji","doi":"10.1109/ISIT44484.2020.9174215","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new design framework on Device-to-Device (D2D) coded caching networks with optimal communication load (rate) but significantly less file subpacketizations compared to that of the well-known D2D coded caching scheme proposed by Ji, Caire and Molisch (JCM). The proposed design framework is referred to as the Packet Type-based (PTB) design, where each file is partitioned into packets according to their pre-defined types while the cache placement and user multicast grouping are based on the packet types. This leads to the so-called raw packet saving gain for the subpacketization levels. By a careful selection of transmitters within each multicasting group, a so-called further splitting ratio gain of the subpacketizatios can also be achieved. By the joint effect of the raw packet saving gain and the further splitting ratio gain, an order-wise subpacketization reduction can be achieved compared to the JCM scheme while preserving the optimal rate. In addition, as the first time presented in the literature according to our knowledge, we find that unequal subpacketizaton is a key to achieve subpacketization reductions when the number of users is odd. As a by-product, instead of directly translating shared link caching schemes to D2D caching schemes, at least for the sake of subpackeitzation, a new design framework is indeed needed.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Design Framework on D2D Coded Caching with Optimal Rate and Less Subpacketizations\",\"authors\":\"Xiang Zhang, Xianfeng Terry Yang, Mingyue Ji\",\"doi\":\"10.1109/ISIT44484.2020.9174215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new design framework on Device-to-Device (D2D) coded caching networks with optimal communication load (rate) but significantly less file subpacketizations compared to that of the well-known D2D coded caching scheme proposed by Ji, Caire and Molisch (JCM). The proposed design framework is referred to as the Packet Type-based (PTB) design, where each file is partitioned into packets according to their pre-defined types while the cache placement and user multicast grouping are based on the packet types. This leads to the so-called raw packet saving gain for the subpacketization levels. By a careful selection of transmitters within each multicasting group, a so-called further splitting ratio gain of the subpacketizatios can also be achieved. By the joint effect of the raw packet saving gain and the further splitting ratio gain, an order-wise subpacketization reduction can be achieved compared to the JCM scheme while preserving the optimal rate. In addition, as the first time presented in the literature according to our knowledge, we find that unequal subpacketizaton is a key to achieve subpacketization reductions when the number of users is odd. As a by-product, instead of directly translating shared link caching schemes to D2D caching schemes, at least for the sake of subpackeitzation, a new design framework is indeed needed.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种新的设备到设备(D2D)编码缓存网络的设计框架,该网络具有最佳的通信负载(速率),但与JCM (Ji, Caire和Molisch)提出的众所周知的D2D编码缓存方案相比,其文件子分组明显减少。所提出的设计框架被称为基于包类型(Packet Type-based, PTB)的设计,其中每个文件根据其预定义的类型划分为包,而缓存放置和用户多播分组则基于包类型。这导致了所谓的原始数据包保存增益,用于子分组级别。通过仔细选择每个多播组内的发射机,还可以实现所谓的子分组的进一步分割比增益。在原始数据包保存增益和进一步分割比增益的共同作用下,与JCM方案相比,可以在保持最优速率的同时实现有序子分组减少。此外,据我们所知,我们首次在文献中发现,当用户数量为奇数时,不相等的亚分组是实现亚分组减少的关键。作为一个副产品,我们确实需要一个新的设计框架,而不是直接将共享链接缓存方案转换为D2D缓存方案,至少是为了实现子分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Design Framework on D2D Coded Caching with Optimal Rate and Less Subpacketizations
In this paper, we propose a new design framework on Device-to-Device (D2D) coded caching networks with optimal communication load (rate) but significantly less file subpacketizations compared to that of the well-known D2D coded caching scheme proposed by Ji, Caire and Molisch (JCM). The proposed design framework is referred to as the Packet Type-based (PTB) design, where each file is partitioned into packets according to their pre-defined types while the cache placement and user multicast grouping are based on the packet types. This leads to the so-called raw packet saving gain for the subpacketization levels. By a careful selection of transmitters within each multicasting group, a so-called further splitting ratio gain of the subpacketizatios can also be achieved. By the joint effect of the raw packet saving gain and the further splitting ratio gain, an order-wise subpacketization reduction can be achieved compared to the JCM scheme while preserving the optimal rate. In addition, as the first time presented in the literature according to our knowledge, we find that unequal subpacketizaton is a key to achieve subpacketization reductions when the number of users is odd. As a by-product, instead of directly translating shared link caching schemes to D2D caching schemes, at least for the sake of subpackeitzation, a new design framework is indeed needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信