K. Koike, A. Hara, Sakurako Natori, Shohei Yamauchi, Masatoshi Yamato, K. Oyama, H. Yaegashi
{"title":"孔型的CD偏置控制","authors":"K. Koike, A. Hara, Sakurako Natori, Shohei Yamauchi, Masatoshi Yamato, K. Oyama, H. Yaegashi","doi":"10.1117/12.2218961","DOIUrl":null,"url":null,"abstract":"Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][5] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. Especially roughness and X-Y CD bias are paid attention because it cause cut error and pattern defect. In this case, we applied some smoothing process to care hole roughness[4]. Each smoothing process showed different effect on X-Y CD bias. In this paper, we will report the pattern controllability comparison of trench and block + inverse. It include X-Y CD bias, roughness and process usability. Furthermore we will discuss optimum method focused on X-Y CD bias when we use additional process such as smoothing and shrink etching .","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"9779 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CD bias control on hole pattern\",\"authors\":\"K. Koike, A. Hara, Sakurako Natori, Shohei Yamauchi, Masatoshi Yamato, K. Oyama, H. Yaegashi\",\"doi\":\"10.1117/12.2218961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][5] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. Especially roughness and X-Y CD bias are paid attention because it cause cut error and pattern defect. In this case, we applied some smoothing process to care hole roughness[4]. Each smoothing process showed different effect on X-Y CD bias. In this paper, we will report the pattern controllability comparison of trench and block + inverse. It include X-Y CD bias, roughness and process usability. Furthermore we will discuss optimum method focused on X-Y CD bias when we use additional process such as smoothing and shrink etching .\",\"PeriodicalId\":193904,\"journal\":{\"name\":\"SPIE Advanced Lithography\",\"volume\":\"9779 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2218961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2218961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gridded design rules[1] is major process in configuring logic circuit used 193-immersion lithography. In the scaling of grid patterning, we can make 10nm order line and space pattern by using multiple patterning techniques such as self-aligned multiple patterning (SAMP) and litho-etch- litho-etch (LELE)[2][3][5] . On the other hand, Line cut process has some error parameters such as pattern defect, placement error, roughness and X-Y CD bias with the decreasing scale. Especially roughness and X-Y CD bias are paid attention because it cause cut error and pattern defect. In this case, we applied some smoothing process to care hole roughness[4]. Each smoothing process showed different effect on X-Y CD bias. In this paper, we will report the pattern controllability comparison of trench and block + inverse. It include X-Y CD bias, roughness and process usability. Furthermore we will discuss optimum method focused on X-Y CD bias when we use additional process such as smoothing and shrink etching .