多导联心电信号的动态压缩感知方法

Grazia Iadarola, P. Daponte, F. Picariello, L. D. Vito
{"title":"多导联心电信号的动态压缩感知方法","authors":"Grazia Iadarola, P. Daponte, F. Picariello, L. D. Vito","doi":"10.1109/MeMeA49120.2020.9137307","DOIUrl":null,"url":null,"abstract":"This paper proposes a dynamic method based on Compressed Sensing (CS) to reconstruct multi-lead electrocardiography (ECG) signals in support of Internet-of-Medical-Things. Specifically, the sensing matrix is dynamically evaluated through the signal samples acquired by the first lead. The experimental evaluation demonstrates that, compared to the traditional CS multi-lead method adopting a random sensing matrix, the proposed dynamic method exhibits a lower difference from the original ECG signal.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Dynamic Approach for Compressed Sensing of Multi–lead ECG Signals\",\"authors\":\"Grazia Iadarola, P. Daponte, F. Picariello, L. D. Vito\",\"doi\":\"10.1109/MeMeA49120.2020.9137307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dynamic method based on Compressed Sensing (CS) to reconstruct multi-lead electrocardiography (ECG) signals in support of Internet-of-Medical-Things. Specifically, the sensing matrix is dynamically evaluated through the signal samples acquired by the first lead. The experimental evaluation demonstrates that, compared to the traditional CS multi-lead method adopting a random sensing matrix, the proposed dynamic method exhibits a lower difference from the original ECG signal.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于压缩感知(CS)的多导联心电信号动态重构方法,支持医疗物联网技术。具体来说,传感矩阵通过第一引线采集的信号样本进行动态评估。实验评估表明,与采用随机传感矩阵的传统CS多导联方法相比,本文提出的动态方法与原始心电信号的差异较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Approach for Compressed Sensing of Multi–lead ECG Signals
This paper proposes a dynamic method based on Compressed Sensing (CS) to reconstruct multi-lead electrocardiography (ECG) signals in support of Internet-of-Medical-Things. Specifically, the sensing matrix is dynamically evaluated through the signal samples acquired by the first lead. The experimental evaluation demonstrates that, compared to the traditional CS multi-lead method adopting a random sensing matrix, the proposed dynamic method exhibits a lower difference from the original ECG signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信