Grazia Iadarola, P. Daponte, F. Picariello, L. D. Vito
{"title":"多导联心电信号的动态压缩感知方法","authors":"Grazia Iadarola, P. Daponte, F. Picariello, L. D. Vito","doi":"10.1109/MeMeA49120.2020.9137307","DOIUrl":null,"url":null,"abstract":"This paper proposes a dynamic method based on Compressed Sensing (CS) to reconstruct multi-lead electrocardiography (ECG) signals in support of Internet-of-Medical-Things. Specifically, the sensing matrix is dynamically evaluated through the signal samples acquired by the first lead. The experimental evaluation demonstrates that, compared to the traditional CS multi-lead method adopting a random sensing matrix, the proposed dynamic method exhibits a lower difference from the original ECG signal.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Dynamic Approach for Compressed Sensing of Multi–lead ECG Signals\",\"authors\":\"Grazia Iadarola, P. Daponte, F. Picariello, L. D. Vito\",\"doi\":\"10.1109/MeMeA49120.2020.9137307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dynamic method based on Compressed Sensing (CS) to reconstruct multi-lead electrocardiography (ECG) signals in support of Internet-of-Medical-Things. Specifically, the sensing matrix is dynamically evaluated through the signal samples acquired by the first lead. The experimental evaluation demonstrates that, compared to the traditional CS multi-lead method adopting a random sensing matrix, the proposed dynamic method exhibits a lower difference from the original ECG signal.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dynamic Approach for Compressed Sensing of Multi–lead ECG Signals
This paper proposes a dynamic method based on Compressed Sensing (CS) to reconstruct multi-lead electrocardiography (ECG) signals in support of Internet-of-Medical-Things. Specifically, the sensing matrix is dynamically evaluated through the signal samples acquired by the first lead. The experimental evaluation demonstrates that, compared to the traditional CS multi-lead method adopting a random sensing matrix, the proposed dynamic method exhibits a lower difference from the original ECG signal.