基于自监督学习和多任务预训练的单通道声学去噪

Yi Li, Yang Sun, S. M. Naqvi
{"title":"基于自监督学习和多任务预训练的单通道声学去噪","authors":"Yi Li, Yang Sun, S. M. Naqvi","doi":"10.1109/MFI55806.2022.9913855","DOIUrl":null,"url":null,"abstract":"In self-supervised learning-based single-channel speech denoising problem, it is challenging to reduce the gap between the denoising performance on the estimated and target speech signals with existed pre-tasks. In this paper, we propose a multi-task pre-training method to improve the speech denoising performance within self-supervised learning. In the proposed pre-training autoencoder (PAE), only a very limited set of unpaired and unseen clean speech signals are required to learn speech latent representations. Meanwhile, to solve the limitation of existing single pre-task, the proposed masking module exploits the dereverberated mask and estimated ratio mask to denoise the mixture as the new pre-task. The downstream task autoencoder (DAE) utilizes unlabeled and unseen reverberant mixtures to generate the estimated mixtures. The DAE is trained to share a latent representation with the clean examples from the learned representation in the PAE. Experimental results on a benchmark dataset demonstrate that the proposed method outperforms the state-of-the-art approaches.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Supervised Learning and Multi-Task Pre-Training Based Single-Channel Acoustic Denoising\",\"authors\":\"Yi Li, Yang Sun, S. M. Naqvi\",\"doi\":\"10.1109/MFI55806.2022.9913855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In self-supervised learning-based single-channel speech denoising problem, it is challenging to reduce the gap between the denoising performance on the estimated and target speech signals with existed pre-tasks. In this paper, we propose a multi-task pre-training method to improve the speech denoising performance within self-supervised learning. In the proposed pre-training autoencoder (PAE), only a very limited set of unpaired and unseen clean speech signals are required to learn speech latent representations. Meanwhile, to solve the limitation of existing single pre-task, the proposed masking module exploits the dereverberated mask and estimated ratio mask to denoise the mixture as the new pre-task. The downstream task autoencoder (DAE) utilizes unlabeled and unseen reverberant mixtures to generate the estimated mixtures. The DAE is trained to share a latent representation with the clean examples from the learned representation in the PAE. Experimental results on a benchmark dataset demonstrate that the proposed method outperforms the state-of-the-art approaches.\",\"PeriodicalId\":344737,\"journal\":{\"name\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI55806.2022.9913855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在基于自监督学习的单通道语音去噪问题中,如何利用已有的预任务减小估计语音信号与目标语音信号去噪性能之间的差距是一个挑战。在本文中,我们提出了一种多任务预训练方法来提高自监督学习中的语音去噪性能。在本文提出的预训练自编码器(PAE)中,只需要一组非常有限的未配对和未见过的干净语音信号来学习语音潜在表征。同时,为了解决现有单一预任务的局限性,本文提出的掩模模块利用脱脱掩模和估计比例掩模作为新的预任务对混合信号进行去噪。下游任务自编码器(DAE)利用未标记和不可见的混响混合物来产生估计的混合物。DAE被训练成与PAE中学习到的表示中的干净示例共享潜在表示。在一个基准数据集上的实验结果表明,该方法优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Supervised Learning and Multi-Task Pre-Training Based Single-Channel Acoustic Denoising
In self-supervised learning-based single-channel speech denoising problem, it is challenging to reduce the gap between the denoising performance on the estimated and target speech signals with existed pre-tasks. In this paper, we propose a multi-task pre-training method to improve the speech denoising performance within self-supervised learning. In the proposed pre-training autoencoder (PAE), only a very limited set of unpaired and unseen clean speech signals are required to learn speech latent representations. Meanwhile, to solve the limitation of existing single pre-task, the proposed masking module exploits the dereverberated mask and estimated ratio mask to denoise the mixture as the new pre-task. The downstream task autoencoder (DAE) utilizes unlabeled and unseen reverberant mixtures to generate the estimated mixtures. The DAE is trained to share a latent representation with the clean examples from the learned representation in the PAE. Experimental results on a benchmark dataset demonstrate that the proposed method outperforms the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信