身份验证用MITLL三模态数据集的设计

E. Singer, B. J. Borgstrom, Kenneth Alperin, Trang Nguyen, C. Dagli, Melissa R. Dale, A. Ross
{"title":"身份验证用MITLL三模态数据集的设计","authors":"E. Singer, B. J. Borgstrom, Kenneth Alperin, Trang Nguyen, C. Dagli, Melissa R. Dale, A. Ross","doi":"10.1109/IWBF57495.2023.10157658","DOIUrl":null,"url":null,"abstract":"The recent advances in deep learning have led to an increased interest in the development of techniques for multimodal identity verification applications, particularly in the area of biometric fusion. Associated with these efforts is a corresponding need for large scale multimodal datasets to provide the bases for establishing performance baselines for proposed approaches. After examining the characteristics of existing multimodal datasets, this paper will describe the development of the MITLL Trimodal dataset, a new triple-modality collection of data comprising parallel samples of audio, image, and text for 553 subjects. The dataset is formed from YouTube videos and Twitter tweets. Baseline single modality results using a common processing pipeline are presented, along with the results of applying a conventional fusion algorithm to the individual stream scores.","PeriodicalId":273412,"journal":{"name":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Design of the MITLL Trimodal Dataset for Identity Verification\",\"authors\":\"E. Singer, B. J. Borgstrom, Kenneth Alperin, Trang Nguyen, C. Dagli, Melissa R. Dale, A. Ross\",\"doi\":\"10.1109/IWBF57495.2023.10157658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent advances in deep learning have led to an increased interest in the development of techniques for multimodal identity verification applications, particularly in the area of biometric fusion. Associated with these efforts is a corresponding need for large scale multimodal datasets to provide the bases for establishing performance baselines for proposed approaches. After examining the characteristics of existing multimodal datasets, this paper will describe the development of the MITLL Trimodal dataset, a new triple-modality collection of data comprising parallel samples of audio, image, and text for 553 subjects. The dataset is formed from YouTube videos and Twitter tweets. Baseline single modality results using a common processing pipeline are presented, along with the results of applying a conventional fusion algorithm to the individual stream scores.\",\"PeriodicalId\":273412,\"journal\":{\"name\":\"2023 11th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 11th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF57495.2023.10157658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF57495.2023.10157658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习的最新进展导致了对多模态身份验证应用技术开发的兴趣增加,特别是在生物识别融合领域。与这些努力相关的是对大规模多模态数据集的相应需求,以提供为拟议方法建立性能基线的基础。在研究了现有多模态数据集的特征之后,本文将描述MITLL三模态数据集的发展,这是一个新的三模态数据集,包括553个受试者的音频、图像和文本的并行样本。该数据集由YouTube视频和Twitter推文组成。给出了使用通用处理管道的基线单模态结果,以及将传统融合算法应用于单个流分数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Design of the MITLL Trimodal Dataset for Identity Verification
The recent advances in deep learning have led to an increased interest in the development of techniques for multimodal identity verification applications, particularly in the area of biometric fusion. Associated with these efforts is a corresponding need for large scale multimodal datasets to provide the bases for establishing performance baselines for proposed approaches. After examining the characteristics of existing multimodal datasets, this paper will describe the development of the MITLL Trimodal dataset, a new triple-modality collection of data comprising parallel samples of audio, image, and text for 553 subjects. The dataset is formed from YouTube videos and Twitter tweets. Baseline single modality results using a common processing pipeline are presented, along with the results of applying a conventional fusion algorithm to the individual stream scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信