{"title":"统一基于密度的聚类和离群点检测","authors":"Yunxin Tao, D. Pi","doi":"10.1109/WKDD.2009.127","DOIUrl":null,"url":null,"abstract":"Density-based clustering and density-based outlier detection have been extensively studied in the data mining. However, Existing works address density-based clustering or density-based outlier detection solely. But for many scenarios, it is more meaningful to unify density-based clustering and outlier detection when both the clustering and outlier detection results are needed simultaneously. In this paper, a novel algorithm named DBCOD that unifies density-based clustering and outlier detection is proposed. In order to discover density-based clusters and assign to each outlier a degree of being an outlier, a novel concept called neighborhood-based local density factor (NLDF) is employed. The experimental results on different shape, large-scale, and high-dimensional databases demonstrate the effectiveness and efficiency of our method.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Unifying Density-Based Clustering and Outlier Detection\",\"authors\":\"Yunxin Tao, D. Pi\",\"doi\":\"10.1109/WKDD.2009.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density-based clustering and density-based outlier detection have been extensively studied in the data mining. However, Existing works address density-based clustering or density-based outlier detection solely. But for many scenarios, it is more meaningful to unify density-based clustering and outlier detection when both the clustering and outlier detection results are needed simultaneously. In this paper, a novel algorithm named DBCOD that unifies density-based clustering and outlier detection is proposed. In order to discover density-based clusters and assign to each outlier a degree of being an outlier, a novel concept called neighborhood-based local density factor (NLDF) is employed. The experimental results on different shape, large-scale, and high-dimensional databases demonstrate the effectiveness and efficiency of our method.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unifying Density-Based Clustering and Outlier Detection
Density-based clustering and density-based outlier detection have been extensively studied in the data mining. However, Existing works address density-based clustering or density-based outlier detection solely. But for many scenarios, it is more meaningful to unify density-based clustering and outlier detection when both the clustering and outlier detection results are needed simultaneously. In this paper, a novel algorithm named DBCOD that unifies density-based clustering and outlier detection is proposed. In order to discover density-based clusters and assign to each outlier a degree of being an outlier, a novel concept called neighborhood-based local density factor (NLDF) is employed. The experimental results on different shape, large-scale, and high-dimensional databases demonstrate the effectiveness and efficiency of our method.