关键词:法律语义网中的混合知识检索模型

Biao Fan, Guangqiang Liu, Tao Liu, H. Hu, Xiaoyong Du
{"title":"关键词:法律语义网中的混合知识检索模型","authors":"Biao Fan, Guangqiang Liu, Tao Liu, H. Hu, Xiaoyong Du","doi":"10.1109/ChinaGrid.2009.19","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid knowledge retrieval model KeyOnto, which combines ontology based knowledge retrieval model with traditional Vector Space Model (VSM). KeyOnto model makes use of domain ontology to organize and structure knowledge resources. Documents and queries are represented by concepts and term vectors respectively. Furthermore, ontology based query expansion called K2CM, is introduced to get expanded concepts of a query. Domain specific terms are used to form a term vector for queries and documents. Basing on these vectors, we can evaluate term similarity and concept similarity respectively, and integrate them together. Domain specific thesaurus is used to assist knowledge retrieval. Experiments show that compared with each single model, KeyOnto model improves precision of query result.","PeriodicalId":212445,"journal":{"name":"2009 Fourth ChinaGrid Annual Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KeyOnto: A Hybrid Knowledge Retrieval Model in Law Semantic Web\",\"authors\":\"Biao Fan, Guangqiang Liu, Tao Liu, H. Hu, Xiaoyong Du\",\"doi\":\"10.1109/ChinaGrid.2009.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a hybrid knowledge retrieval model KeyOnto, which combines ontology based knowledge retrieval model with traditional Vector Space Model (VSM). KeyOnto model makes use of domain ontology to organize and structure knowledge resources. Documents and queries are represented by concepts and term vectors respectively. Furthermore, ontology based query expansion called K2CM, is introduced to get expanded concepts of a query. Domain specific terms are used to form a term vector for queries and documents. Basing on these vectors, we can evaluate term similarity and concept similarity respectively, and integrate them together. Domain specific thesaurus is used to assist knowledge retrieval. Experiments show that compared with each single model, KeyOnto model improves precision of query result.\",\"PeriodicalId\":212445,\"journal\":{\"name\":\"2009 Fourth ChinaGrid Annual Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth ChinaGrid Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaGrid.2009.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将基于本体的知识检索模型与传统的向量空间模型(VSM)相结合,提出了一种混合知识检索模型KeyOnto。KeyOnto模型利用领域本体对知识资源进行组织和构造。文档和查询分别由概念和术语向量表示。此外,还引入了基于本体的查询扩展(K2CM)来扩展查询的概念。特定于领域的术语用于形成查询和文档的术语向量。基于这些向量,我们可以分别评估术语相似度和概念相似度,并将它们整合在一起。特定领域的同义词典用于协助知识检索。实验表明,与单个模型相比,KeyOnto模型提高了查询结果的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KeyOnto: A Hybrid Knowledge Retrieval Model in Law Semantic Web
This paper proposes a hybrid knowledge retrieval model KeyOnto, which combines ontology based knowledge retrieval model with traditional Vector Space Model (VSM). KeyOnto model makes use of domain ontology to organize and structure knowledge resources. Documents and queries are represented by concepts and term vectors respectively. Furthermore, ontology based query expansion called K2CM, is introduced to get expanded concepts of a query. Domain specific terms are used to form a term vector for queries and documents. Basing on these vectors, we can evaluate term similarity and concept similarity respectively, and integrate them together. Domain specific thesaurus is used to assist knowledge retrieval. Experiments show that compared with each single model, KeyOnto model improves precision of query result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信