{"title":"ICIP 2022挑战:通过切片辅助微调和推理增强的PEDCMI, ood","authors":"Alžběta Turečková, Tomáš Tureček, Z. Oplatková","doi":"10.1109/ICIP46576.2022.9897826","DOIUrl":null,"url":null,"abstract":"This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICIP 2022 Challenge: PEDCMI, TOOD Enhanced by Slicing-Aided Fine-Tuning and Inference\",\"authors\":\"Alžběta Turečková, Tomáš Tureček, Z. Oplatková\",\"doi\":\"10.1109/ICIP46576.2022.9897826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ICIP 2022 Challenge: PEDCMI, TOOD Enhanced by Slicing-Aided Fine-Tuning and Inference
This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance.