cmp的异质片上互连案例

Asit K. Mishra, N. Vijaykrishnan, C. Das
{"title":"cmp的异质片上互连案例","authors":"Asit K. Mishra, N. Vijaykrishnan, C. Das","doi":"10.1145/2000064.2000111","DOIUrl":null,"url":null,"abstract":"Network-on-chip (NoC) has become a critical shared resource in the emerging Chip Multiprocessor (CMP) era. Most prior NoC designs have used the same type of router across the entire network. While this homogeneous network design eases the burden on a network designer, partitioning the resources equally among all routers across the network does not lead to optimal resource usage, and hence, affects the performance-power envelope. In this work, we propose to apportion the resources in an NoC to leverage the non-uniformity in network resource demand. Our proposal includes partitioning the network resources, specifically buffers and links, in an optimal manner. This approach results in redistributing resources such that routers that require more resources are allocated more buffers and wider links compared to routers demanding fewer resources. This results in a novel heterogeneous network, called HeteroNoC, which is composed of two types of routers - small power efficient routers, and big high performance routers. We evaluate a number of heterogeneous network configurations, composed of big and small routers, and show that giving more resources to routers along the diagonals in a mesh network provides maximum benefits in terms of performance and power. We also show the potential benefits of the HeteroNoC design by co-evaluating it with memory-controllers and configuring it with an asymmetric CMP consisting of heterogeneous cores.","PeriodicalId":340732,"journal":{"name":"2011 38th Annual International Symposium on Computer Architecture (ISCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"A case for heterogeneous on-chip interconnects for CMPs\",\"authors\":\"Asit K. Mishra, N. Vijaykrishnan, C. Das\",\"doi\":\"10.1145/2000064.2000111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-on-chip (NoC) has become a critical shared resource in the emerging Chip Multiprocessor (CMP) era. Most prior NoC designs have used the same type of router across the entire network. While this homogeneous network design eases the burden on a network designer, partitioning the resources equally among all routers across the network does not lead to optimal resource usage, and hence, affects the performance-power envelope. In this work, we propose to apportion the resources in an NoC to leverage the non-uniformity in network resource demand. Our proposal includes partitioning the network resources, specifically buffers and links, in an optimal manner. This approach results in redistributing resources such that routers that require more resources are allocated more buffers and wider links compared to routers demanding fewer resources. This results in a novel heterogeneous network, called HeteroNoC, which is composed of two types of routers - small power efficient routers, and big high performance routers. We evaluate a number of heterogeneous network configurations, composed of big and small routers, and show that giving more resources to routers along the diagonals in a mesh network provides maximum benefits in terms of performance and power. We also show the potential benefits of the HeteroNoC design by co-evaluating it with memory-controllers and configuring it with an asymmetric CMP consisting of heterogeneous cores.\",\"PeriodicalId\":340732,\"journal\":{\"name\":\"2011 38th Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 38th Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2000064.2000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 38th Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2000064.2000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

摘要

在新兴的芯片多处理器(CMP)时代,片上网络(NoC)已成为一种重要的共享资源。大多数以前的NoC设计在整个网络中使用相同类型的路由器。虽然这种同构网络设计减轻了网络设计者的负担,但在网络上的所有路由器之间平均分配资源并不能实现最佳的资源使用,因此会影响性能-功率信封。在这项工作中,我们建议在NoC中分配资源,以利用网络资源需求的不均匀性。我们的建议包括以最优方式划分网络资源,特别是缓冲区和链路。这种方法会导致资源的重新分配,与需要更少资源的路由器相比,需要更多资源的路由器会被分配更多的缓冲区和更宽的链路。这就产生了一种新的异构网络,称为HeteroNoC,它由两种类型的路由器组成——小功率高效路由器和大型高性能路由器。我们评估了许多由大型和小型路由器组成的异构网络配置,并表明在网状网络中沿对角线向路由器提供更多资源可以在性能和功率方面提供最大的好处。我们还展示了HeteroNoC设计的潜在优势,通过对其与内存控制器进行共同评估,并将其配置为由异构内核组成的非对称CMP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A case for heterogeneous on-chip interconnects for CMPs
Network-on-chip (NoC) has become a critical shared resource in the emerging Chip Multiprocessor (CMP) era. Most prior NoC designs have used the same type of router across the entire network. While this homogeneous network design eases the burden on a network designer, partitioning the resources equally among all routers across the network does not lead to optimal resource usage, and hence, affects the performance-power envelope. In this work, we propose to apportion the resources in an NoC to leverage the non-uniformity in network resource demand. Our proposal includes partitioning the network resources, specifically buffers and links, in an optimal manner. This approach results in redistributing resources such that routers that require more resources are allocated more buffers and wider links compared to routers demanding fewer resources. This results in a novel heterogeneous network, called HeteroNoC, which is composed of two types of routers - small power efficient routers, and big high performance routers. We evaluate a number of heterogeneous network configurations, composed of big and small routers, and show that giving more resources to routers along the diagonals in a mesh network provides maximum benefits in terms of performance and power. We also show the potential benefits of the HeteroNoC design by co-evaluating it with memory-controllers and configuring it with an asymmetric CMP consisting of heterogeneous cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信