无基础真值的二分类器评价

M. Fedorchuk, B. Lamiroy
{"title":"无基础真值的二分类器评价","authors":"M. Fedorchuk, B. Lamiroy","doi":"10.1109/ICAPR.2017.8593175","DOIUrl":null,"url":null,"abstract":"In this paper we study statistically sound ways of comparing classifiers in absence for fully reliable reference data. Based on previously published partial frameworks, we explore a more comprehensive approach to comparing and ranking classifiers that is robust to incomplete, erroneous or missing reference evaluation data. On the one hand, the use of a generalized McNemar's test is shown to give reliable confidence measures in the ranking of two classifiers under the assumption of an existing better-than-random reference classifier. We extend its use to cases where its traditional formulation is notoriously unstable. We also provide a computational context that allows it to be used for large amounts of data. Our classifier evaluation model is generic and applies to any set of binary classifiers. We have more specifically tested and validated it on synthetic and real data coming from document image binarization.","PeriodicalId":239965,"journal":{"name":"2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR)","volume":"99 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Binary Classifier Evaluation Without Ground Truth\",\"authors\":\"M. Fedorchuk, B. Lamiroy\",\"doi\":\"10.1109/ICAPR.2017.8593175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study statistically sound ways of comparing classifiers in absence for fully reliable reference data. Based on previously published partial frameworks, we explore a more comprehensive approach to comparing and ranking classifiers that is robust to incomplete, erroneous or missing reference evaluation data. On the one hand, the use of a generalized McNemar's test is shown to give reliable confidence measures in the ranking of two classifiers under the assumption of an existing better-than-random reference classifier. We extend its use to cases where its traditional formulation is notoriously unstable. We also provide a computational context that allows it to be used for large amounts of data. Our classifier evaluation model is generic and applies to any set of binary classifiers. We have more specifically tested and validated it on synthetic and real data coming from document image binarization.\",\"PeriodicalId\":239965,\"journal\":{\"name\":\"2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR)\",\"volume\":\"99 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPR.2017.8593175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2017.8593175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们研究了在没有完全可靠的参考数据的情况下比较分类器的统计方法。基于先前发布的部分框架,我们探索了一种更全面的方法来比较和排名分类器,该分类器对不完整,错误或缺失的参考评估数据具有鲁棒性。一方面,在假设存在优于随机的参考分类器的情况下,使用广义McNemar检验可以在两个分类器的排序中给出可靠的置信度度量。我们将其使用范围扩展到其传统配方众所周知不稳定的情况。我们还提供了一个计算上下文,允许它用于大量数据。我们的分类器评估模型是通用的,适用于任何一组二元分类器。我们对来自文档图像二值化的合成数据和真实数据进行了更具体的测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Classifier Evaluation Without Ground Truth
In this paper we study statistically sound ways of comparing classifiers in absence for fully reliable reference data. Based on previously published partial frameworks, we explore a more comprehensive approach to comparing and ranking classifiers that is robust to incomplete, erroneous or missing reference evaluation data. On the one hand, the use of a generalized McNemar's test is shown to give reliable confidence measures in the ranking of two classifiers under the assumption of an existing better-than-random reference classifier. We extend its use to cases where its traditional formulation is notoriously unstable. We also provide a computational context that allows it to be used for large amounts of data. Our classifier evaluation model is generic and applies to any set of binary classifiers. We have more specifically tested and validated it on synthetic and real data coming from document image binarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信