{"title":"pca辅助的全卷积网络在多通道fMRI语义分割中的应用","authors":"L. Tai, Haoyang Ye, Qiong Ye, Ming Liu","doi":"10.1109/ICAR.2017.8023506","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of functional magnetic resonance imaging (fMRI) makes great sense for pathology diagnosis and decision system of medical robots. The multi-channel fMRI provides more information of the pathological features. But the increased amount of data causes complexity in feature detections. This paper proposes a principal component analysis (PCA)-aided fully convolutional network to particularly deal with multi-channel fMRI. We transfer the learned weights of contemporary classification networks to the segmentation task by fine-tuning. The results of the convolutional network are compared with various methods e.g. k-NN. A new labeling strategy is proposed to solve the semantic segmentation problem with unclear boundaries. Even with a small-sized training dataset, the test results demonstrate that our model outperforms other pathological feature detection methods. Besides, its forward inference only takes 90 milliseconds for a single set of fMRI data. To our knowledge, this is the first time to realize pixel-wise labeling of multi-channel magnetic resonance image using FCN.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"PCA-aided fully convolutional networks for semantic segmentation of multi-channel fMRI\",\"authors\":\"L. Tai, Haoyang Ye, Qiong Ye, Ming Liu\",\"doi\":\"10.1109/ICAR.2017.8023506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of functional magnetic resonance imaging (fMRI) makes great sense for pathology diagnosis and decision system of medical robots. The multi-channel fMRI provides more information of the pathological features. But the increased amount of data causes complexity in feature detections. This paper proposes a principal component analysis (PCA)-aided fully convolutional network to particularly deal with multi-channel fMRI. We transfer the learned weights of contemporary classification networks to the segmentation task by fine-tuning. The results of the convolutional network are compared with various methods e.g. k-NN. A new labeling strategy is proposed to solve the semantic segmentation problem with unclear boundaries. Even with a small-sized training dataset, the test results demonstrate that our model outperforms other pathological feature detection methods. Besides, its forward inference only takes 90 milliseconds for a single set of fMRI data. To our knowledge, this is the first time to realize pixel-wise labeling of multi-channel magnetic resonance image using FCN.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PCA-aided fully convolutional networks for semantic segmentation of multi-channel fMRI
Semantic segmentation of functional magnetic resonance imaging (fMRI) makes great sense for pathology diagnosis and decision system of medical robots. The multi-channel fMRI provides more information of the pathological features. But the increased amount of data causes complexity in feature detections. This paper proposes a principal component analysis (PCA)-aided fully convolutional network to particularly deal with multi-channel fMRI. We transfer the learned weights of contemporary classification networks to the segmentation task by fine-tuning. The results of the convolutional network are compared with various methods e.g. k-NN. A new labeling strategy is proposed to solve the semantic segmentation problem with unclear boundaries. Even with a small-sized training dataset, the test results demonstrate that our model outperforms other pathological feature detection methods. Besides, its forward inference only takes 90 milliseconds for a single set of fMRI data. To our knowledge, this is the first time to realize pixel-wise labeling of multi-channel magnetic resonance image using FCN.