三角梯度各向异性材料二维非定常扩散对流反应问题的纯边界元法

M. Azis
{"title":"三角梯度各向异性材料二维非定常扩散对流反应问题的纯边界元法","authors":"M. Azis","doi":"10.1080/15502287.2021.2002974","DOIUrl":null,"url":null,"abstract":"Abstract A diffusion convection reaction (DCR) problem for anisotropic functionally graded materials (FGMs) is discussed in this paper to find numerical solutions by using a combined Laplace transform (LT) and boundary element method (BEM). The variable coefficients equation is transformed to a constant coefficients equation which is then Laplace-transformed so that the time variable vanishes. A purely boundary integral equation involving a time-free fundamental solution can then be derived and employed to find numerical solutions using a BEM. The results obtained are inversely transformed numerically using the Stehfest formula. The combined LT-BEM is easy to implement, efficient and accurate for solving numerically the problems.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A boundary-only element method for 2D unsteady diffusion convection reaction problems of trigonometrically graded anisotropic materials\",\"authors\":\"M. Azis\",\"doi\":\"10.1080/15502287.2021.2002974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A diffusion convection reaction (DCR) problem for anisotropic functionally graded materials (FGMs) is discussed in this paper to find numerical solutions by using a combined Laplace transform (LT) and boundary element method (BEM). The variable coefficients equation is transformed to a constant coefficients equation which is then Laplace-transformed so that the time variable vanishes. A purely boundary integral equation involving a time-free fundamental solution can then be derived and employed to find numerical solutions using a BEM. The results obtained are inversely transformed numerically using the Stehfest formula. The combined LT-BEM is easy to implement, efficient and accurate for solving numerically the problems.\",\"PeriodicalId\":315058,\"journal\":{\"name\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15502287.2021.2002974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2021.2002974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文讨论了各向异性功能梯度材料(fgm)的扩散对流反应(DCR)问题,并利用拉普拉斯变换和边界元法进行了数值求解。变系数方程被转换成常系数方程然后进行拉普拉斯变换,这样时间变量就消失了。然后可以推导出包含无时基本解的纯边界积分方程,并利用边界元法求出数值解。用Stehfest公式对所得结果进行了数值反变换。结合LT-BEM实现简单、高效、准确,可用于数值求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A boundary-only element method for 2D unsteady diffusion convection reaction problems of trigonometrically graded anisotropic materials
Abstract A diffusion convection reaction (DCR) problem for anisotropic functionally graded materials (FGMs) is discussed in this paper to find numerical solutions by using a combined Laplace transform (LT) and boundary element method (BEM). The variable coefficients equation is transformed to a constant coefficients equation which is then Laplace-transformed so that the time variable vanishes. A purely boundary integral equation involving a time-free fundamental solution can then be derived and employed to find numerical solutions using a BEM. The results obtained are inversely transformed numerically using the Stehfest formula. The combined LT-BEM is easy to implement, efficient and accurate for solving numerically the problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信