ST-COPOT:基于轮廓多边形树的时空聚类

Yongli Zhang, C. Eick
{"title":"ST-COPOT:基于轮廓多边形树的时空聚类","authors":"Yongli Zhang, C. Eick","doi":"10.1145/3139958.3140051","DOIUrl":null,"url":null,"abstract":"Nowadays, growing effort has been put to develop spatio-temporal clustering approaches that are capable of discovering interesting patterns in large spatio-temporal data streams. In this paper, we propose a 3-phase serial, density-contour based clustering algorithm called ST-COPOT, which can identify spatio-temporal cluster at multiple levels of density granularity. ST-COPOT takes the point cloud data as input and divides it into batches, next, it employs a non-parametric kernel density estimation approach and contouring algorithms to obtain spatial clusters; at last, spatio-temporal clusters are formed by identifying continuing relationships between spatial clusters in consecutive batches. Moreover, a novel data structure called contour polygon tree is introduced as a compact representation of the spatial clusters obtained for each batch for different density thresholds, and a family of novel distance functions that operate on contour polygon trees are proposed to identify continuing clusters. The experimental results on NYC taxi trips data show that ST-COPOT can effectively discover interesting spatio-temporal patterns in taxi pickup location streams.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ST-COPOT: Spatio-temporal Clustering with Contour Polygon Trees\",\"authors\":\"Yongli Zhang, C. Eick\",\"doi\":\"10.1145/3139958.3140051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, growing effort has been put to develop spatio-temporal clustering approaches that are capable of discovering interesting patterns in large spatio-temporal data streams. In this paper, we propose a 3-phase serial, density-contour based clustering algorithm called ST-COPOT, which can identify spatio-temporal cluster at multiple levels of density granularity. ST-COPOT takes the point cloud data as input and divides it into batches, next, it employs a non-parametric kernel density estimation approach and contouring algorithms to obtain spatial clusters; at last, spatio-temporal clusters are formed by identifying continuing relationships between spatial clusters in consecutive batches. Moreover, a novel data structure called contour polygon tree is introduced as a compact representation of the spatial clusters obtained for each batch for different density thresholds, and a family of novel distance functions that operate on contour polygon trees are proposed to identify continuing clusters. The experimental results on NYC taxi trips data show that ST-COPOT can effectively discover interesting spatio-temporal patterns in taxi pickup location streams.\",\"PeriodicalId\":270649,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139958.3140051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目前,越来越多的人致力于开发时空聚类方法,这些方法能够在大型时空数据流中发现有趣的模式。本文提出了一种基于密度轮廓的三相序列聚类算法ST-COPOT,该算法可以识别多个密度粒度级别的时空聚类。ST-COPOT以点云数据为输入,对其进行批量分割,然后采用非参数核密度估计方法和轮廓算法获得空间聚类;最后,通过识别连续批次空间集群之间的连续关系,形成时空集群。此外,引入了一种新的数据结构,即轮廓多边形树,作为不同密度阈值下每批空间聚类的紧凑表示,并提出了一组新的距离函数,用于识别连续聚类。纽约市出租车出行数据的实验结果表明,ST-COPOT可以有效地发现出租车接送位置流中有趣的时空模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ST-COPOT: Spatio-temporal Clustering with Contour Polygon Trees
Nowadays, growing effort has been put to develop spatio-temporal clustering approaches that are capable of discovering interesting patterns in large spatio-temporal data streams. In this paper, we propose a 3-phase serial, density-contour based clustering algorithm called ST-COPOT, which can identify spatio-temporal cluster at multiple levels of density granularity. ST-COPOT takes the point cloud data as input and divides it into batches, next, it employs a non-parametric kernel density estimation approach and contouring algorithms to obtain spatial clusters; at last, spatio-temporal clusters are formed by identifying continuing relationships between spatial clusters in consecutive batches. Moreover, a novel data structure called contour polygon tree is introduced as a compact representation of the spatial clusters obtained for each batch for different density thresholds, and a family of novel distance functions that operate on contour polygon trees are proposed to identify continuing clusters. The experimental results on NYC taxi trips data show that ST-COPOT can effectively discover interesting spatio-temporal patterns in taxi pickup location streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信