通过特征变换学习能源需求领域知识

S. Siddique, R. Povinelli
{"title":"通过特征变换学习能源需求领域知识","authors":"S. Siddique, R. Povinelli","doi":"10.1109/PESGM.2014.6939792","DOIUrl":null,"url":null,"abstract":"Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method that incorporates machine learning techniques to learn domain knowledge by transforming the input features. Our approach divides the inputs into subsets and then searches for the best machine learning technique for transforming each subset of inputs. Preprocessing of the inputs is not required in our approach because the machine learning techniques appropriately transform the inputs. Hence, this technique is capable of learning where nonlinear transformations of the inputs are needed. We show that the learned data transformations correspond to energy forecasting domain knowledge. Transformed subsets of the inputs are combined using ensemble regression, and the final forecasted value is obtained. Our approach is tested with natural gas and electricity demand signals. Experimental results show how this method can learn domain knowledge, which yields improved forecasts.","PeriodicalId":149134,"journal":{"name":"2014 IEEE PES General Meeting | Conference & Exposition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning energy demand domain knowledge via feature transformation\",\"authors\":\"S. Siddique, R. Povinelli\",\"doi\":\"10.1109/PESGM.2014.6939792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method that incorporates machine learning techniques to learn domain knowledge by transforming the input features. Our approach divides the inputs into subsets and then searches for the best machine learning technique for transforming each subset of inputs. Preprocessing of the inputs is not required in our approach because the machine learning techniques appropriately transform the inputs. Hence, this technique is capable of learning where nonlinear transformations of the inputs are needed. We show that the learned data transformations correspond to energy forecasting domain knowledge. Transformed subsets of the inputs are combined using ensemble regression, and the final forecasted value is obtained. Our approach is tested with natural gas and electricity demand signals. Experimental results show how this method can learn domain knowledge, which yields improved forecasts.\",\"PeriodicalId\":149134,\"journal\":{\"name\":\"2014 IEEE PES General Meeting | Conference & Exposition\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE PES General Meeting | Conference & Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM.2014.6939792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE PES General Meeting | Conference & Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2014.6939792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

领域知识是预测能源需求的重要因素。本文介绍了一种结合机器学习技术,通过变换输入特征来学习领域知识的方法。我们的方法将输入分成子集,然后搜索最佳的机器学习技术来转换每个输入子集。我们的方法不需要对输入进行预处理,因为机器学习技术可以适当地转换输入。因此,这种技术能够学习需要对输入进行非线性变换的地方。我们证明了学习到的数据转换对应于能量预测领域的知识。利用集合回归对输入的变换子集进行组合,得到最终的预测值。我们的方法已经用天然气和电力需求信号进行了测试。实验结果表明,该方法可以学习领域知识,提高预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning energy demand domain knowledge via feature transformation
Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method that incorporates machine learning techniques to learn domain knowledge by transforming the input features. Our approach divides the inputs into subsets and then searches for the best machine learning technique for transforming each subset of inputs. Preprocessing of the inputs is not required in our approach because the machine learning techniques appropriately transform the inputs. Hence, this technique is capable of learning where nonlinear transformations of the inputs are needed. We show that the learned data transformations correspond to energy forecasting domain knowledge. Transformed subsets of the inputs are combined using ensemble regression, and the final forecasted value is obtained. Our approach is tested with natural gas and electricity demand signals. Experimental results show how this method can learn domain knowledge, which yields improved forecasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信