使用统计相位检测快速,准确的微架构仿真

R. Srinivasan, Jeanine E. Cook, S. Cooper
{"title":"使用统计相位检测快速,准确的微架构仿真","authors":"R. Srinivasan, Jeanine E. Cook, S. Cooper","doi":"10.1109/ISPASS.2005.1430569","DOIUrl":null,"url":null,"abstract":"Simulation-based microarchitecture research is often hindered by the slow speed of simulators. In this work, we propose a novel statistical technique to identify highly representative unique behaviors or phases in a benchmark based on its IPC (instructions committed per cycle) trace. By simulating the timing of only the unique phases, the cycle-accurate simulation time for the SPEC suite is reduced from 5 months to 5 days, with a significant retention of the original dynamic behavior. Evaluation across many processor configurations within the same architecture family shows that the algorithm is robust. A cost function is provided that enables users to easily optimize the parameters of the algorithm for either simulation speed or accuracy depending on preference. A new measure is introduced to quantify the ability of a simulation speedup technique to retain behavior realized in the original workload. Unlike a first order statistic such as mean value, the newly introduced measure captures important differences in dynamic behavior between the complete and the sampled simulations","PeriodicalId":230669,"journal":{"name":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Fast, Accurate Microarchitecture Simulation Using Statistical Phase Detection\",\"authors\":\"R. Srinivasan, Jeanine E. Cook, S. Cooper\",\"doi\":\"10.1109/ISPASS.2005.1430569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation-based microarchitecture research is often hindered by the slow speed of simulators. In this work, we propose a novel statistical technique to identify highly representative unique behaviors or phases in a benchmark based on its IPC (instructions committed per cycle) trace. By simulating the timing of only the unique phases, the cycle-accurate simulation time for the SPEC suite is reduced from 5 months to 5 days, with a significant retention of the original dynamic behavior. Evaluation across many processor configurations within the same architecture family shows that the algorithm is robust. A cost function is provided that enables users to easily optimize the parameters of the algorithm for either simulation speed or accuracy depending on preference. A new measure is introduced to quantify the ability of a simulation speedup technique to retain behavior realized in the original workload. Unlike a first order statistic such as mean value, the newly introduced measure captures important differences in dynamic behavior between the complete and the sampled simulations\",\"PeriodicalId\":230669,\"journal\":{\"name\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2005.1430569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2005.1430569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

基于仿真的微体系结构研究常常受到仿真器速度慢的阻碍。在这项工作中,我们提出了一种新的统计技术来识别基于IPC(每周期提交的指令)跟踪的基准中具有高度代表性的独特行为或阶段。通过仅模拟独特相位的时间,SPEC套件的周期精确模拟时间从5个月减少到5天,并显著保留了原始动态行为。对同一体系结构家族中多个处理器配置的评估表明,该算法具有鲁棒性。提供了一个成本函数,使用户能够根据偏好轻松地优化算法的参数,无论是模拟速度还是精度。引入了一种新的度量来量化仿真加速技术保留在原始工作负载中实现的行为的能力。与均值等一阶统计量不同,新引入的测量捕获了完整和采样模拟之间动态行为的重要差异
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast, Accurate Microarchitecture Simulation Using Statistical Phase Detection
Simulation-based microarchitecture research is often hindered by the slow speed of simulators. In this work, we propose a novel statistical technique to identify highly representative unique behaviors or phases in a benchmark based on its IPC (instructions committed per cycle) trace. By simulating the timing of only the unique phases, the cycle-accurate simulation time for the SPEC suite is reduced from 5 months to 5 days, with a significant retention of the original dynamic behavior. Evaluation across many processor configurations within the same architecture family shows that the algorithm is robust. A cost function is provided that enables users to easily optimize the parameters of the algorithm for either simulation speed or accuracy depending on preference. A new measure is introduced to quantify the ability of a simulation speedup technique to retain behavior realized in the original workload. Unlike a first order statistic such as mean value, the newly introduced measure captures important differences in dynamic behavior between the complete and the sampled simulations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信