卷积对混沌信号的影响

S. Isabelle, A. Oppenheim, G. Wornell
{"title":"卷积对混沌信号的影响","authors":"S. Isabelle, A. Oppenheim, G. Wornell","doi":"10.1109/ICASSP.1992.226468","DOIUrl":null,"url":null,"abstract":"Because chaotic signals are potentially useful both in describing physical phenomena and in engineering applications, signal processing algorithms exploiting their unique characteristics are of interest. The authors consider issues pertaining to processing signals in convolutional distortion. Specifically, they discuss the effects of convolutional distortion on two parameters commonly used in the description of chaotic signals-the Lyapunov exponents and the fractal dimension of the attractor. In addition, a blind deconvolution technique based on minimizing a nonlinear prediction error for data generated by one-dimensional chaotic maps is presented.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effects of convolution on chaotic signals\",\"authors\":\"S. Isabelle, A. Oppenheim, G. Wornell\",\"doi\":\"10.1109/ICASSP.1992.226468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because chaotic signals are potentially useful both in describing physical phenomena and in engineering applications, signal processing algorithms exploiting their unique characteristics are of interest. The authors consider issues pertaining to processing signals in convolutional distortion. Specifically, they discuss the effects of convolutional distortion on two parameters commonly used in the description of chaotic signals-the Lyapunov exponents and the fractal dimension of the attractor. In addition, a blind deconvolution technique based on minimizing a nonlinear prediction error for data generated by one-dimensional chaotic maps is presented.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.226468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于混沌信号在描述物理现象和工程应用中都有潜在的用处,利用其独特特性的信号处理算法引起了人们的兴趣。作者考虑了与卷积失真信号处理有关的问题。具体来说,他们讨论了卷积失真对混沌信号描述中常用的两个参数的影响——李雅普诺夫指数和吸引子的分形维数。此外,提出了一种基于最小化一维混沌映射生成的数据的非线性预测误差的盲反褶积技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of convolution on chaotic signals
Because chaotic signals are potentially useful both in describing physical phenomena and in engineering applications, signal processing algorithms exploiting their unique characteristics are of interest. The authors consider issues pertaining to processing signals in convolutional distortion. Specifically, they discuss the effects of convolutional distortion on two parameters commonly used in the description of chaotic signals-the Lyapunov exponents and the fractal dimension of the attractor. In addition, a blind deconvolution technique based on minimizing a nonlinear prediction error for data generated by one-dimensional chaotic maps is presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信