基于人机交互的机器人自学习方法在家庭环境中的通用技能学习

Tao Cao, Dayou Li, C. Maple, Renxi Qiu
{"title":"基于人机交互的机器人自学习方法在家庭环境中的通用技能学习","authors":"Tao Cao, Dayou Li, C. Maple, Renxi Qiu","doi":"10.1109/ROBIO.2013.6739459","DOIUrl":null,"url":null,"abstract":"Unstructured domestic environments present a substantial challenge to effective robotic operation. Domestic environment requires service robots to deal with unexpected environment changes, novel objects, and user manipulations. We present an approach to enable service robots to actively learn high-level skills in an unstructured environment. This involves using a combination of processing environment changes, recording and learning user manipulation data, setting up meaningful hypothesis, proactively performing test actions and interacting with user feedback, and logic reasoning. We demonstrate our Robot Self-Learning (RSL) approach by using ROS (Robotic Operating System) and Care-O-bot (COB) 3. These methods enable service robots to learn generalized high-level skills in a sophisticated and changing environment. The RSL approach allows robots to learn new actions imposed by a human and action condition from perception changes from the environment. We also present logic based reasoning engine to speed up the self learning process.","PeriodicalId":434960,"journal":{"name":"2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human interaction based Robot Self-Learning approach for generic skill learning in domestic environment\",\"authors\":\"Tao Cao, Dayou Li, C. Maple, Renxi Qiu\",\"doi\":\"10.1109/ROBIO.2013.6739459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unstructured domestic environments present a substantial challenge to effective robotic operation. Domestic environment requires service robots to deal with unexpected environment changes, novel objects, and user manipulations. We present an approach to enable service robots to actively learn high-level skills in an unstructured environment. This involves using a combination of processing environment changes, recording and learning user manipulation data, setting up meaningful hypothesis, proactively performing test actions and interacting with user feedback, and logic reasoning. We demonstrate our Robot Self-Learning (RSL) approach by using ROS (Robotic Operating System) and Care-O-bot (COB) 3. These methods enable service robots to learn generalized high-level skills in a sophisticated and changing environment. The RSL approach allows robots to learn new actions imposed by a human and action condition from perception changes from the environment. We also present logic based reasoning engine to speed up the self learning process.\",\"PeriodicalId\":434960,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2013.6739459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2013.6739459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非结构化的家庭环境对有效的机器人操作提出了实质性的挑战。家庭环境要求服务机器人应对突发环境变化、新物体和用户操作。我们提出了一种使服务机器人在非结构化环境中主动学习高级技能的方法。这包括使用处理环境变化的组合,记录和学习用户操作数据,建立有意义的假设,主动执行测试操作并与用户反馈进行交互,以及逻辑推理。我们通过使用ROS(机器人操作系统)和Care-O-bot (COB) 3演示了我们的机器人自学习(RSL)方法。这些方法使服务机器人能够在复杂多变的环境中学习通用的高级技能。RSL方法允许机器人从环境的感知变化中学习人类强加的新动作和动作条件。我们还提出了基于逻辑的推理引擎,以加快自学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human interaction based Robot Self-Learning approach for generic skill learning in domestic environment
Unstructured domestic environments present a substantial challenge to effective robotic operation. Domestic environment requires service robots to deal with unexpected environment changes, novel objects, and user manipulations. We present an approach to enable service robots to actively learn high-level skills in an unstructured environment. This involves using a combination of processing environment changes, recording and learning user manipulation data, setting up meaningful hypothesis, proactively performing test actions and interacting with user feedback, and logic reasoning. We demonstrate our Robot Self-Learning (RSL) approach by using ROS (Robotic Operating System) and Care-O-bot (COB) 3. These methods enable service robots to learn generalized high-level skills in a sophisticated and changing environment. The RSL approach allows robots to learn new actions imposed by a human and action condition from perception changes from the environment. We also present logic based reasoning engine to speed up the self learning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信