{"title":"理解区块链分片协议中的事务放置问题","authors":"Liuyang Ren, Paul A. S. Ward","doi":"10.1109/iemcon53756.2021.9623200","DOIUrl":null,"url":null,"abstract":"While many researchers adopt a sharding approach to design scaling blockchains, few works have studied the transaction placement problem incurred by sharding protocols. The widely-used hashing placement algorithm renders an overwhelming portion of transactions as cross-shard. In this paper, we analyze the high cost of cross-shard transactions and reveal that most Bitcoin transactions have simple dependencies and can become single-shard under a placement algorithm taking transaction dependencies into account. In addition, we perform a case study of OptChain, which is the state-of-the-art transaction placement algorithm for sharded blockchains, and find a shortcoming of it. A fix is proposed, and our evaluation results demonstrate that the fix helps OptChain improve the system throughput by 4x.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Understanding the Transaction Placement Problem in Blockchain Sharding Protocols\",\"authors\":\"Liuyang Ren, Paul A. S. Ward\",\"doi\":\"10.1109/iemcon53756.2021.9623200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While many researchers adopt a sharding approach to design scaling blockchains, few works have studied the transaction placement problem incurred by sharding protocols. The widely-used hashing placement algorithm renders an overwhelming portion of transactions as cross-shard. In this paper, we analyze the high cost of cross-shard transactions and reveal that most Bitcoin transactions have simple dependencies and can become single-shard under a placement algorithm taking transaction dependencies into account. In addition, we perform a case study of OptChain, which is the state-of-the-art transaction placement algorithm for sharded blockchains, and find a shortcoming of it. A fix is proposed, and our evaluation results demonstrate that the fix helps OptChain improve the system throughput by 4x.\",\"PeriodicalId\":272590,\"journal\":{\"name\":\"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iemcon53756.2021.9623200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the Transaction Placement Problem in Blockchain Sharding Protocols
While many researchers adopt a sharding approach to design scaling blockchains, few works have studied the transaction placement problem incurred by sharding protocols. The widely-used hashing placement algorithm renders an overwhelming portion of transactions as cross-shard. In this paper, we analyze the high cost of cross-shard transactions and reveal that most Bitcoin transactions have simple dependencies and can become single-shard under a placement algorithm taking transaction dependencies into account. In addition, we perform a case study of OptChain, which is the state-of-the-art transaction placement algorithm for sharded blockchains, and find a shortcoming of it. A fix is proposed, and our evaluation results demonstrate that the fix helps OptChain improve the system throughput by 4x.