利用BERT和RoBERTa对印尼在线毒性进行多标签分类

Yoga Sagama, A. Alamsyah
{"title":"利用BERT和RoBERTa对印尼在线毒性进行多标签分类","authors":"Yoga Sagama, A. Alamsyah","doi":"10.1109/IAICT59002.2023.10205892","DOIUrl":null,"url":null,"abstract":"Online toxicity detection in Indonesian digital interactions poses a significant challenge due to the complexity and nuances of language. This study aims to evaluate the effectiveness of the BERT and RoBERTa language models, specifically IndoBERTweet, IndoBERT, and Indonesian RoBERTa, for identifying toxic content in Bahasa Indonesia. Our research methodology includes data collection, dataset pre-processing, data annotation, and model fine-tuning for multi-label classification tasks. The model performance is assessed using macro average of precision, recall, and F1-score. Our findings show that IndoBERTweet, fine-tuned under optimal hyperparameters (5e-5 learning rate, a batch size of 32, and three epochs), outperforms the other models with a precision of 0.85, recall of 0.94, and an F1-score of 0.89. These findings indicate that IndoBERTweet performs better in detecting and classifying online toxicity in Bahasa Indonesia. The study ’s implications extend to fostering a safer and healthier online environment for Indonesian users, while also providing a foundation for future research exploring additional models, hyperparameter optimizations, and techniques for enhancing toxicity detection and classification in the Indonesian language.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Label Classification of Indonesian Online Toxicity using BERT and RoBERTa\",\"authors\":\"Yoga Sagama, A. Alamsyah\",\"doi\":\"10.1109/IAICT59002.2023.10205892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online toxicity detection in Indonesian digital interactions poses a significant challenge due to the complexity and nuances of language. This study aims to evaluate the effectiveness of the BERT and RoBERTa language models, specifically IndoBERTweet, IndoBERT, and Indonesian RoBERTa, for identifying toxic content in Bahasa Indonesia. Our research methodology includes data collection, dataset pre-processing, data annotation, and model fine-tuning for multi-label classification tasks. The model performance is assessed using macro average of precision, recall, and F1-score. Our findings show that IndoBERTweet, fine-tuned under optimal hyperparameters (5e-5 learning rate, a batch size of 32, and three epochs), outperforms the other models with a precision of 0.85, recall of 0.94, and an F1-score of 0.89. These findings indicate that IndoBERTweet performs better in detecting and classifying online toxicity in Bahasa Indonesia. The study ’s implications extend to fostering a safer and healthier online environment for Indonesian users, while also providing a foundation for future research exploring additional models, hyperparameter optimizations, and techniques for enhancing toxicity detection and classification in the Indonesian language.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于语言的复杂性和细微差别,印尼数字互动中的在线毒性检测面临重大挑战。本研究旨在评估BERT和RoBERTa语言模型的有效性,特别是IndoBERTweet、IndoBERT和印尼语RoBERTa,用于识别印尼语中的有毒内容。我们的研究方法包括数据收集、数据集预处理、数据注释和多标签分类任务的模型微调。使用精度、召回率和f1分数的宏观平均值来评估模型的性能。我们的研究结果表明,在最优超参数(5e-5学习率,批大小为32,三个epoch)下进行微调的IndoBERTweet以0.85的精度、0.94的召回率和0.89的f1分数优于其他模型。这些发现表明IndoBERTweet在检测和分类印尼语在线毒性方面表现更好。这项研究的意义延伸到为印尼用户创造一个更安全、更健康的网络环境,同时也为未来探索其他模型、超参数优化和技术的研究奠定基础,以加强印尼语的毒性检测和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Label Classification of Indonesian Online Toxicity using BERT and RoBERTa
Online toxicity detection in Indonesian digital interactions poses a significant challenge due to the complexity and nuances of language. This study aims to evaluate the effectiveness of the BERT and RoBERTa language models, specifically IndoBERTweet, IndoBERT, and Indonesian RoBERTa, for identifying toxic content in Bahasa Indonesia. Our research methodology includes data collection, dataset pre-processing, data annotation, and model fine-tuning for multi-label classification tasks. The model performance is assessed using macro average of precision, recall, and F1-score. Our findings show that IndoBERTweet, fine-tuned under optimal hyperparameters (5e-5 learning rate, a batch size of 32, and three epochs), outperforms the other models with a precision of 0.85, recall of 0.94, and an F1-score of 0.89. These findings indicate that IndoBERTweet performs better in detecting and classifying online toxicity in Bahasa Indonesia. The study ’s implications extend to fostering a safer and healthier online environment for Indonesian users, while also providing a foundation for future research exploring additional models, hyperparameter optimizations, and techniques for enhancing toxicity detection and classification in the Indonesian language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信