离散随机动力系统的最优有限时间控制

Junsoo Lee, W. Haddad, Manuel Lanchares
{"title":"离散随机动力系统的最优有限时间控制","authors":"Junsoo Lee, W. Haddad, Manuel Lanchares","doi":"10.23919/ACC53348.2022.9867597","DOIUrl":null,"url":null,"abstract":"In this paper, we address finite time stabilization in probability of discrete-time stochastic dynamical systems. Specifically, a stochastic finite-time optimal control framework is developed by exploiting connections between stochastic Lyapunov theory for finite time stability in probability and stochastic Bellman theory. In particular, we show that finite time stability in probability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function that can clearly be seen to be the solution to the steady state form of the stochastic Bellman equation, and hence, guaranteeing both stochastic finite time stability and optimality.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Finite Time Control for Discrete-Time Stochastic Dynamical Systems\",\"authors\":\"Junsoo Lee, W. Haddad, Manuel Lanchares\",\"doi\":\"10.23919/ACC53348.2022.9867597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address finite time stabilization in probability of discrete-time stochastic dynamical systems. Specifically, a stochastic finite-time optimal control framework is developed by exploiting connections between stochastic Lyapunov theory for finite time stability in probability and stochastic Bellman theory. In particular, we show that finite time stability in probability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function that can clearly be seen to be the solution to the steady state form of the stochastic Bellman equation, and hence, guaranteeing both stochastic finite time stability and optimality.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究离散随机动力系统的概率有限时间镇定问题。具体地说,利用概率有限时间稳定性的随机Lyapunov理论和随机Bellman理论之间的联系,建立了一个随机有限时间最优控制框架。特别地,我们证明了用Lyapunov函数保证了闭环非线性系统的概率有限时间稳定性,该函数可以清楚地看作是随机Bellman方程稳态形式的解,从而保证了随机有限时间稳定性和最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Finite Time Control for Discrete-Time Stochastic Dynamical Systems
In this paper, we address finite time stabilization in probability of discrete-time stochastic dynamical systems. Specifically, a stochastic finite-time optimal control framework is developed by exploiting connections between stochastic Lyapunov theory for finite time stability in probability and stochastic Bellman theory. In particular, we show that finite time stability in probability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function that can clearly be seen to be the solution to the steady state form of the stochastic Bellman equation, and hence, guaranteeing both stochastic finite time stability and optimality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信