{"title":"一种改进分类层次的无监督协作学习方法","authors":"Cédric Wemmert, P. Gançarski, J. Korczak","doi":"10.1109/TAI.1999.809797","DOIUrl":null,"url":null,"abstract":"This article deals with the design of a hybrid learning system. This system integrates different kinds of unsupervised learning methods and gives a set of class hierarchies as the result. The classes in these hierarchies are very similar. The method occurrences compare their results and automatically refine them to try to make them converge towards a unique hierarchy that unifies all the results. Thus, the system decreases the importance of the initial choices made when initializing an unsupervised learning (the choice of the method and its parameters) and to solve some of the limitations of the methods used such as an imposed number of classes, a non-hierarchical result, or the size of the hierarchy.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An unsupervised collaborative learning method to refine classification hierarchies\",\"authors\":\"Cédric Wemmert, P. Gançarski, J. Korczak\",\"doi\":\"10.1109/TAI.1999.809797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the design of a hybrid learning system. This system integrates different kinds of unsupervised learning methods and gives a set of class hierarchies as the result. The classes in these hierarchies are very similar. The method occurrences compare their results and automatically refine them to try to make them converge towards a unique hierarchy that unifies all the results. Thus, the system decreases the importance of the initial choices made when initializing an unsupervised learning (the choice of the method and its parameters) and to solve some of the limitations of the methods used such as an imposed number of classes, a non-hierarchical result, or the size of the hierarchy.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An unsupervised collaborative learning method to refine classification hierarchies
This article deals with the design of a hybrid learning system. This system integrates different kinds of unsupervised learning methods and gives a set of class hierarchies as the result. The classes in these hierarchies are very similar. The method occurrences compare their results and automatically refine them to try to make them converge towards a unique hierarchy that unifies all the results. Thus, the system decreases the importance of the initial choices made when initializing an unsupervised learning (the choice of the method and its parameters) and to solve some of the limitations of the methods used such as an imposed number of classes, a non-hierarchical result, or the size of the hierarchy.