基于加权稀疏表示学习的图像自动着色

Bo Li, Juncai Zhou
{"title":"基于加权稀疏表示学习的图像自动着色","authors":"Bo Li, Juncai Zhou","doi":"10.1109/ICDH51081.2020.00009","DOIUrl":null,"url":null,"abstract":"Automatic image colorization is to generate a colorful image from a given gray image automatically. It is an ill-conditioned task and remains a challenging problem in computer vision. One main challenge in example-based image colorization is how to find the correct correspondence between the grayscale image and the reference color image. In this paper, we propose a novel automatic example-based image colorization method via weighted sparse matching. First, we segment the images into superpixels, and operates at the superpixel level rather than pixels. Then we extract intensity features and texture features for each superpixel, which are then concatenated to form its descriptor. The feature descriptors collected from the reference image composes the representation dictionary. Finally, the correspondence between target grayscale image and the colorful reference image is built by solving a weighted sparse representation learning problem, and the target superpixels are colorized based on the chrominance information from the corresponding reference superpixels. Experimental results demonstrate that our colorization method outperforms several state-of-the-art methods.","PeriodicalId":210502,"journal":{"name":"2020 8th International Conference on Digital Home (ICDH)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Image Colorization via Weighted Sparse Representation Learning\",\"authors\":\"Bo Li, Juncai Zhou\",\"doi\":\"10.1109/ICDH51081.2020.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic image colorization is to generate a colorful image from a given gray image automatically. It is an ill-conditioned task and remains a challenging problem in computer vision. One main challenge in example-based image colorization is how to find the correct correspondence between the grayscale image and the reference color image. In this paper, we propose a novel automatic example-based image colorization method via weighted sparse matching. First, we segment the images into superpixels, and operates at the superpixel level rather than pixels. Then we extract intensity features and texture features for each superpixel, which are then concatenated to form its descriptor. The feature descriptors collected from the reference image composes the representation dictionary. Finally, the correspondence between target grayscale image and the colorful reference image is built by solving a weighted sparse representation learning problem, and the target superpixels are colorized based on the chrominance information from the corresponding reference superpixels. Experimental results demonstrate that our colorization method outperforms several state-of-the-art methods.\",\"PeriodicalId\":210502,\"journal\":{\"name\":\"2020 8th International Conference on Digital Home (ICDH)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Digital Home (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH51081.2020.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Digital Home (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH51081.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像自动上色是将给定的灰度图像自动生成彩色图像。这是一个病态任务,也是计算机视觉领域的一个难题。基于示例的图像着色的一个主要挑战是如何在灰度图像和参考彩色图像之间找到正确的对应关系。本文提出了一种基于加权稀疏匹配的基于实例的图像自动着色方法。首先,我们将图像分割成超像素,并在超像素级而不是像素级进行操作。然后,我们提取每个超像素的强度特征和纹理特征,然后将它们连接起来形成描述符。从参考图像中收集的特征描述符组成表示字典。最后,通过求解加权稀疏表示学习问题,建立目标灰度图像与彩色参考图像之间的对应关系,并根据对应参考超像素的色度信息对目标超像素进行着色。实验结果表明,我们的着色方法优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Image Colorization via Weighted Sparse Representation Learning
Automatic image colorization is to generate a colorful image from a given gray image automatically. It is an ill-conditioned task and remains a challenging problem in computer vision. One main challenge in example-based image colorization is how to find the correct correspondence between the grayscale image and the reference color image. In this paper, we propose a novel automatic example-based image colorization method via weighted sparse matching. First, we segment the images into superpixels, and operates at the superpixel level rather than pixels. Then we extract intensity features and texture features for each superpixel, which are then concatenated to form its descriptor. The feature descriptors collected from the reference image composes the representation dictionary. Finally, the correspondence between target grayscale image and the colorful reference image is built by solving a weighted sparse representation learning problem, and the target superpixels are colorized based on the chrominance information from the corresponding reference superpixels. Experimental results demonstrate that our colorization method outperforms several state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信