多蜂窝通信网络中分布式D2D通信的软FFR方案

Soraida Sabella, M. Susanto, F. A. Setyawan, F. Hamdani
{"title":"多蜂窝通信网络中分布式D2D通信的软FFR方案","authors":"Soraida Sabella, M. Susanto, F. A. Setyawan, F. Hamdani","doi":"10.1109/COMNETSAT56033.2022.9994505","DOIUrl":null,"url":null,"abstract":"The increasing demands for multimedia mobile traffics in cellular communication networks have resulted in a massive increase in interests of researchers to increase network capacity and to improve the network quality. Device to Device (D2D) communication has emerged as a promising technology to improve spectral efficiency further. In a conventional cellular network, cellular users or Cellular User Equipment (CUE) communicate with each other through a central coordinator such as a base station (BS) or E node B (eNB). D2D communication allows the users (D2D pair) communicate directly each other without going through eNB. However, enabling D2D communication in the cellular networks cause the interference issues, since D2D devices share the frequency bandwidth with the conventional cellular networks, i.e., in-band D2D. The interference situations become more worse in the multicell scenario of cellular system. This paper proposes a resource allocation method for D2D communication in downlink cellular systems using soft Fractional Frequency Reuse (FFR) scheme. Modeling and simulation have been used to examine the proposed soft FFR in multicell scenario consisting of three cell of macrocell cellular communication networks. Extensive simulation experiment has been carried out and the performance parameters in terms of Signal to Interference plus Noise Ratio (SINR), throughput, and Bit Error Rate (BER) has been measured. The simulation results for soft FFR are compared to the three multicell cellular networks without soft FFR. The simulation results show that the proposed soft FFR can improve the cellular network with a number of D2D pairs deployed. SINR performance achieves 50% improvement with 100 D2D pairs deployed in the cell center of macrocell.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft FFR Scheme for Distributed D2D Communication in Multicell of Cellular Communication Networks\",\"authors\":\"Soraida Sabella, M. Susanto, F. A. Setyawan, F. Hamdani\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demands for multimedia mobile traffics in cellular communication networks have resulted in a massive increase in interests of researchers to increase network capacity and to improve the network quality. Device to Device (D2D) communication has emerged as a promising technology to improve spectral efficiency further. In a conventional cellular network, cellular users or Cellular User Equipment (CUE) communicate with each other through a central coordinator such as a base station (BS) or E node B (eNB). D2D communication allows the users (D2D pair) communicate directly each other without going through eNB. However, enabling D2D communication in the cellular networks cause the interference issues, since D2D devices share the frequency bandwidth with the conventional cellular networks, i.e., in-band D2D. The interference situations become more worse in the multicell scenario of cellular system. This paper proposes a resource allocation method for D2D communication in downlink cellular systems using soft Fractional Frequency Reuse (FFR) scheme. Modeling and simulation have been used to examine the proposed soft FFR in multicell scenario consisting of three cell of macrocell cellular communication networks. Extensive simulation experiment has been carried out and the performance parameters in terms of Signal to Interference plus Noise Ratio (SINR), throughput, and Bit Error Rate (BER) has been measured. The simulation results for soft FFR are compared to the three multicell cellular networks without soft FFR. The simulation results show that the proposed soft FFR can improve the cellular network with a number of D2D pairs deployed. SINR performance achieves 50% improvement with 100 D2D pairs deployed in the cell center of macrocell.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着蜂窝通信网络对多媒体移动业务需求的不断增长,增加网络容量和提高网络质量成为研究热点。设备到设备(D2D)通信已经成为一种有前途的技术,可以进一步提高频谱效率。在传统的蜂窝网络中,蜂窝用户或蜂窝用户设备(CUE)通过中央协调器(如基站(BS)或E节点B (eNB))相互通信。D2D通信允许用户(D2D对)之间不经过eNB直接通信。然而,在蜂窝网络中启用D2D通信会导致干扰问题,因为D2D设备与传统蜂窝网络共享频率带宽,即带内D2D。在蜂窝系统的多细胞场景下,干扰情况变得更加严重。提出了一种基于软分数频率复用(FFR)的下行蜂窝系统D2D通信资源分配方法。采用建模和仿真的方法验证了该方法在由3个宏蜂窝通信网络组成的多蜂窝场景下的软FFR。进行了大量的仿真实验,并测量了信噪比(SINR)、吞吐量和误码率(BER)等性能参数。将软FFR的仿真结果与无软FFR的三种多细胞网络进行了比较。仿真结果表明,所提出的软FFR可以改善部署多个D2D对的蜂窝网络。在macrocell的cell中心部署100对D2D对,SINR性能提高50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft FFR Scheme for Distributed D2D Communication in Multicell of Cellular Communication Networks
The increasing demands for multimedia mobile traffics in cellular communication networks have resulted in a massive increase in interests of researchers to increase network capacity and to improve the network quality. Device to Device (D2D) communication has emerged as a promising technology to improve spectral efficiency further. In a conventional cellular network, cellular users or Cellular User Equipment (CUE) communicate with each other through a central coordinator such as a base station (BS) or E node B (eNB). D2D communication allows the users (D2D pair) communicate directly each other without going through eNB. However, enabling D2D communication in the cellular networks cause the interference issues, since D2D devices share the frequency bandwidth with the conventional cellular networks, i.e., in-band D2D. The interference situations become more worse in the multicell scenario of cellular system. This paper proposes a resource allocation method for D2D communication in downlink cellular systems using soft Fractional Frequency Reuse (FFR) scheme. Modeling and simulation have been used to examine the proposed soft FFR in multicell scenario consisting of three cell of macrocell cellular communication networks. Extensive simulation experiment has been carried out and the performance parameters in terms of Signal to Interference plus Noise Ratio (SINR), throughput, and Bit Error Rate (BER) has been measured. The simulation results for soft FFR are compared to the three multicell cellular networks without soft FFR. The simulation results show that the proposed soft FFR can improve the cellular network with a number of D2D pairs deployed. SINR performance achieves 50% improvement with 100 D2D pairs deployed in the cell center of macrocell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信