基于数据融合的身体传感器网络实时监测

Liang Dong, Jian-Kang Wu, Xiang Chen
{"title":"基于数据融合的身体传感器网络实时监测","authors":"Liang Dong, Jian-Kang Wu, Xiang Chen","doi":"10.1109/ICIF.2007.4408176","DOIUrl":null,"url":null,"abstract":"A physical activity monitoring system by data fusion in body sensor networks is presented in this paper, which targets at providing body status information in real time and identifying body activities. By fusion of data collected from several accelerometer sensors placed on different parts of the body, the activities can be identified and tracked Mathematical approaches employed in the system include Kalman filter and hidden Markov model. With the proposed system architecture, these algorithms are distributed to different components of the system. The proposed system is applied to monitoring and identifying daily activities in laboratory and comparatively intensive activities in a gym room. Video-based approach is used as the benchmark to evaluate its performance. Comparative results indicate that, by using the proposed system, body status of daily activities can be estimated with good accuracy in real time, and body activity is identified with high accuracy within short system latency.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Real-time physical activity monitoring by data fusion in body sensor networks\",\"authors\":\"Liang Dong, Jian-Kang Wu, Xiang Chen\",\"doi\":\"10.1109/ICIF.2007.4408176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A physical activity monitoring system by data fusion in body sensor networks is presented in this paper, which targets at providing body status information in real time and identifying body activities. By fusion of data collected from several accelerometer sensors placed on different parts of the body, the activities can be identified and tracked Mathematical approaches employed in the system include Kalman filter and hidden Markov model. With the proposed system architecture, these algorithms are distributed to different components of the system. The proposed system is applied to monitoring and identifying daily activities in laboratory and comparatively intensive activities in a gym room. Video-based approach is used as the benchmark to evaluate its performance. Comparative results indicate that, by using the proposed system, body status of daily activities can be estimated with good accuracy in real time, and body activity is identified with high accuracy within short system latency.\",\"PeriodicalId\":298941,\"journal\":{\"name\":\"2007 10th International Conference on Information Fusion\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2007.4408176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出了一种基于身体传感器网络数据融合的身体活动监测系统,其目标是实时提供身体状态信息,识别身体活动。通过融合放置在身体不同部位的多个加速度传感器收集的数据,可以识别和跟踪活动。该系统采用的数学方法包括卡尔曼滤波和隐马尔可夫模型。在提出的系统架构下,这些算法被分布到系统的不同组件中。该系统应用于实验室日常活动和健身房活动室较密集活动的监测和识别。以基于视频的方法作为基准来评估其性能。对比结果表明,使用该系统可以实时准确地估计人体日常活动状态,在较短的系统延迟内具有较高的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time physical activity monitoring by data fusion in body sensor networks
A physical activity monitoring system by data fusion in body sensor networks is presented in this paper, which targets at providing body status information in real time and identifying body activities. By fusion of data collected from several accelerometer sensors placed on different parts of the body, the activities can be identified and tracked Mathematical approaches employed in the system include Kalman filter and hidden Markov model. With the proposed system architecture, these algorithms are distributed to different components of the system. The proposed system is applied to monitoring and identifying daily activities in laboratory and comparatively intensive activities in a gym room. Video-based approach is used as the benchmark to evaluate its performance. Comparative results indicate that, by using the proposed system, body status of daily activities can be estimated with good accuracy in real time, and body activity is identified with high accuracy within short system latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信