用基于值的因果模型在数值软件中定位故障

Zhuofu Bai, Gang Shu, Andy Podgurski
{"title":"用基于值的因果模型在数值软件中定位故障","authors":"Zhuofu Bai, Gang Shu, Andy Podgurski","doi":"10.1109/ICST.2015.7102597","DOIUrl":null,"url":null,"abstract":"We present NUMFL, a value-based causal inference model for localizing faults in numerical software. NUMFL combines causal and statistical analyses to characterize the causal effects of individual numerical expressions on failures. Given value-profiles for an expression's variables, NUMFL uses generalized propensity scores (GPSs) to reduce confounding bias caused by evaluation of other, faulty expressions. It estimates the average failure-causing effect of an expression using quadratic regression models fit within GPS subclasses. We report on an evaluation of NUMFL with components from four Java numerical libraries, in which it was compared to five alternative statistical fault localization metrics. The results indicate that NUMFL is the most effective technique overall.","PeriodicalId":401414,"journal":{"name":"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"NUMFL: Localizing Faults in Numerical Software Using a Value-Based Causal Model\",\"authors\":\"Zhuofu Bai, Gang Shu, Andy Podgurski\",\"doi\":\"10.1109/ICST.2015.7102597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present NUMFL, a value-based causal inference model for localizing faults in numerical software. NUMFL combines causal and statistical analyses to characterize the causal effects of individual numerical expressions on failures. Given value-profiles for an expression's variables, NUMFL uses generalized propensity scores (GPSs) to reduce confounding bias caused by evaluation of other, faulty expressions. It estimates the average failure-causing effect of an expression using quadratic regression models fit within GPS subclasses. We report on an evaluation of NUMFL with components from four Java numerical libraries, in which it was compared to five alternative statistical fault localization metrics. The results indicate that NUMFL is the most effective technique overall.\",\"PeriodicalId\":401414,\"journal\":{\"name\":\"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST.2015.7102597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2015.7102597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种基于数值的故障定位因果推理模型NUMFL。NUMFL结合因果和统计分析,以表征个别数值表达式对故障的因果效应。给定表达式变量的值概况,NUMFL使用广义倾向评分(gps)来减少由评估其他错误表达式引起的混淆偏差。它使用GPS子类内拟合的二次回归模型估计表达式的平均失效导致效应。我们报告了用四个Java数字库的组件对NUMFL的评估,其中将其与五个可选的统计故障定位度量进行了比较。结果表明,NUMFL是最有效的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMFL: Localizing Faults in Numerical Software Using a Value-Based Causal Model
We present NUMFL, a value-based causal inference model for localizing faults in numerical software. NUMFL combines causal and statistical analyses to characterize the causal effects of individual numerical expressions on failures. Given value-profiles for an expression's variables, NUMFL uses generalized propensity scores (GPSs) to reduce confounding bias caused by evaluation of other, faulty expressions. It estimates the average failure-causing effect of an expression using quadratic regression models fit within GPS subclasses. We report on an evaluation of NUMFL with components from four Java numerical libraries, in which it was compared to five alternative statistical fault localization metrics. The results indicate that NUMFL is the most effective technique overall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信