交通流估计的蚁群优化算法

M. Karova, N. Vasilev, I. Penev
{"title":"交通流估计的蚁群优化算法","authors":"M. Karova, N. Vasilev, I. Penev","doi":"10.1145/3134302.3134317","DOIUrl":null,"url":null,"abstract":"The paper presents a study of the effectiveness of the multithreading implementation of an ant colony optimization algorithm for solving the traffic flow estimation problem. A model of the problem, using graph of the city map, and mathematical formulation of the algorithm, using simulated ants, are described. Experimental results from comparison of the sequential and the multithreading implementation of the algorithm with varying number of graph nodes and ants are summarized.","PeriodicalId":131196,"journal":{"name":"Proceedings of the 18th International Conference on Computer Systems and Technologies","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ant Colony Optimization Algorithm for Traffic Flow Estimation\",\"authors\":\"M. Karova, N. Vasilev, I. Penev\",\"doi\":\"10.1145/3134302.3134317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a study of the effectiveness of the multithreading implementation of an ant colony optimization algorithm for solving the traffic flow estimation problem. A model of the problem, using graph of the city map, and mathematical formulation of the algorithm, using simulated ants, are described. Experimental results from comparison of the sequential and the multithreading implementation of the algorithm with varying number of graph nodes and ants are summarized.\",\"PeriodicalId\":131196,\"journal\":{\"name\":\"Proceedings of the 18th International Conference on Computer Systems and Technologies\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Conference on Computer Systems and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3134302.3134317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3134302.3134317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了蚁群优化算法的多线程实现对交通流估计问题的有效性。本文描述了利用城市地图图形的问题模型,以及利用模拟蚂蚁的算法的数学公式。总结了该算法在不同节点数和蚂蚁数情况下的顺序实现和多线程实现的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ant Colony Optimization Algorithm for Traffic Flow Estimation
The paper presents a study of the effectiveness of the multithreading implementation of an ant colony optimization algorithm for solving the traffic flow estimation problem. A model of the problem, using graph of the city map, and mathematical formulation of the algorithm, using simulated ants, are described. Experimental results from comparison of the sequential and the multithreading implementation of the algorithm with varying number of graph nodes and ants are summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信