利用MFCC命令改进说话人验证

A. Rusli, M. I. Ahmad, M. Z. Ilyas
{"title":"利用MFCC命令改进说话人验证","authors":"A. Rusli, M. I. Ahmad, M. Z. Ilyas","doi":"10.1109/ICORAS.2016.7872609","DOIUrl":null,"url":null,"abstract":"This paper presents a text-dependent speaker verification using Mel-Frequency Cepstral Coefficients (MFCC) and Support Vector Machine (SVM). Mel-Frequency Cepstral Coefficients technique has been used to extract the characteristic from the recorded voice spoken by the user and SVM is used to classify the all models of the speakers and impostors. A Malay spoken digit database is utilized for the training and testing. The aim of this paper is to improve the performance of SVM by selecting the best order of Mel-Frequency Cepstral Coefficients. Five types of Mel-Frequency Cepstral Coefficients order (5, 10, 15, 20, 25) have been tested and classified using SVM. It is shown that 20th and 25th order of MFCC achieved the best total success rate (TSR) and Equal Error Rate (EER).","PeriodicalId":393534,"journal":{"name":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving speaker verification using MFCC order\",\"authors\":\"A. Rusli, M. I. Ahmad, M. Z. Ilyas\",\"doi\":\"10.1109/ICORAS.2016.7872609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a text-dependent speaker verification using Mel-Frequency Cepstral Coefficients (MFCC) and Support Vector Machine (SVM). Mel-Frequency Cepstral Coefficients technique has been used to extract the characteristic from the recorded voice spoken by the user and SVM is used to classify the all models of the speakers and impostors. A Malay spoken digit database is utilized for the training and testing. The aim of this paper is to improve the performance of SVM by selecting the best order of Mel-Frequency Cepstral Coefficients. Five types of Mel-Frequency Cepstral Coefficients order (5, 10, 15, 20, 25) have been tested and classified using SVM. It is shown that 20th and 25th order of MFCC achieved the best total success rate (TSR) and Equal Error Rate (EER).\",\"PeriodicalId\":393534,\"journal\":{\"name\":\"2016 International Conference on Robotics, Automation and Sciences (ICORAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Robotics, Automation and Sciences (ICORAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORAS.2016.7872609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORAS.2016.7872609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于Mel-Frequency倒谱系数(MFCC)和支持向量机(SVM)的文本相关说话人验证方法。利用Mel-Frequency倒谱系数技术从用户的语音录音中提取特征,并利用SVM对说话人和冒名顶替者的所有模型进行分类。马来语口语数字数据库用于培训和测试。本文的目的是通过选择Mel-Frequency倒谱系数的最佳阶数来提高支持向量机的性能。利用支持向量机对5、10、15、20、25五种Mel-Frequency倒谱系数阶进行了测试和分类。结果表明,MFCC的第20阶和第25阶获得了最佳的总成功率(TSR)和等错误率(EER)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving speaker verification using MFCC order
This paper presents a text-dependent speaker verification using Mel-Frequency Cepstral Coefficients (MFCC) and Support Vector Machine (SVM). Mel-Frequency Cepstral Coefficients technique has been used to extract the characteristic from the recorded voice spoken by the user and SVM is used to classify the all models of the speakers and impostors. A Malay spoken digit database is utilized for the training and testing. The aim of this paper is to improve the performance of SVM by selecting the best order of Mel-Frequency Cepstral Coefficients. Five types of Mel-Frequency Cepstral Coefficients order (5, 10, 15, 20, 25) have been tested and classified using SVM. It is shown that 20th and 25th order of MFCC achieved the best total success rate (TSR) and Equal Error Rate (EER).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信