基于KNN匹配的测量区域平差跟踪-学习-检测方法

Yumin Tian, Lin Deng, Qiang Li
{"title":"基于KNN匹配的测量区域平差跟踪-学习-检测方法","authors":"Yumin Tian, Lin Deng, Qiang Li","doi":"10.1109/CIS.2017.00104","DOIUrl":null,"url":null,"abstract":"A Tracking-Learning-Detection (TLD) is a tracking framework that decomposes the long-term tracking task into tracking, learning and detection. To improve the tracking accuracy and precision with TLD, the constraint that a target cannot move a significant distance within a short time period with limited velocity is added, and the target displacement in the previous frame analyzed is used to reduce the detection range of the TLD detector. Instead of using the Median Flow Tracker, a K-Nearest Neighbor (Knn) matching with the Fused Lukas-Kanade method with ORB feature points is used to track targets. Experiments demonstrate that the improved TLD algorithm has better tracking accuracy.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A KNN Match Based Tracking-Learning-Detection Method with Adjustment of Surveyed Areas\",\"authors\":\"Yumin Tian, Lin Deng, Qiang Li\",\"doi\":\"10.1109/CIS.2017.00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Tracking-Learning-Detection (TLD) is a tracking framework that decomposes the long-term tracking task into tracking, learning and detection. To improve the tracking accuracy and precision with TLD, the constraint that a target cannot move a significant distance within a short time period with limited velocity is added, and the target displacement in the previous frame analyzed is used to reduce the detection range of the TLD detector. Instead of using the Median Flow Tracker, a K-Nearest Neighbor (Knn) matching with the Fused Lukas-Kanade method with ORB feature points is used to track targets. Experiments demonstrate that the improved TLD algorithm has better tracking accuracy.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

跟踪-学习-检测(TLD)是一种将长期跟踪任务分解为跟踪、学习和检测的跟踪框架。为了提高TLD的跟踪精度和精度,增加了目标在有限速度下不能在短时间内移动较大距离的约束,并利用分析前一帧的目标位移来减小TLD检测器的检测距离。采用k -最近邻(Knn)匹配方法,结合ORB特征点的Fused lucas - kanade方法对目标进行跟踪,而不是使用中值流跟踪器。实验表明,改进的TLD算法具有更好的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A KNN Match Based Tracking-Learning-Detection Method with Adjustment of Surveyed Areas
A Tracking-Learning-Detection (TLD) is a tracking framework that decomposes the long-term tracking task into tracking, learning and detection. To improve the tracking accuracy and precision with TLD, the constraint that a target cannot move a significant distance within a short time period with limited velocity is added, and the target displacement in the previous frame analyzed is used to reduce the detection range of the TLD detector. Instead of using the Median Flow Tracker, a K-Nearest Neighbor (Knn) matching with the Fused Lukas-Kanade method with ORB feature points is used to track targets. Experiments demonstrate that the improved TLD algorithm has better tracking accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信