利用支持向量机中的图嵌入

Georgios Arvanitidis, A. Tefas
{"title":"利用支持向量机中的图嵌入","authors":"Georgios Arvanitidis, A. Tefas","doi":"10.1109/MLSP.2012.6349736","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel classification framework that is based on the combination of the support vector machine classifier and the graph embedding framework. In particular we propose the substitution of the support vector machine kernel with sub-space or sub-manifold kernels, that are constructed based on the graph embedding framework. Our technique combines the very good generalization ability of the support vector machine classifier with the flexibility of the graph embedding framework resulting in improved classification performance. The attained experimental results on several benchmark and real-life data sets, further support our claim of improved classification performance.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Exploiting graph embedding in support vector machines\",\"authors\":\"Georgios Arvanitidis, A. Tefas\",\"doi\":\"10.1109/MLSP.2012.6349736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel classification framework that is based on the combination of the support vector machine classifier and the graph embedding framework. In particular we propose the substitution of the support vector machine kernel with sub-space or sub-manifold kernels, that are constructed based on the graph embedding framework. Our technique combines the very good generalization ability of the support vector machine classifier with the flexibility of the graph embedding framework resulting in improved classification performance. The attained experimental results on several benchmark and real-life data sets, further support our claim of improved classification performance.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种新的基于支持向量机分类器和图嵌入框架相结合的分类框架。特别地,我们提出用基于图嵌入框架构造的子空间或子流形核替换支持向量机核。我们的技术结合了支持向量机分类器良好的泛化能力和图嵌入框架的灵活性,从而提高了分类性能。在几个基准和现实数据集上获得的实验结果进一步支持了我们改进分类性能的主张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting graph embedding in support vector machines
In this paper we introduce a novel classification framework that is based on the combination of the support vector machine classifier and the graph embedding framework. In particular we propose the substitution of the support vector machine kernel with sub-space or sub-manifold kernels, that are constructed based on the graph embedding framework. Our technique combines the very good generalization ability of the support vector machine classifier with the flexibility of the graph embedding framework resulting in improved classification performance. The attained experimental results on several benchmark and real-life data sets, further support our claim of improved classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信