低导热的纳米热释电探测器。设计和概念

Md Muztoba, N. Melikechi, M. Rana, D. Butler
{"title":"低导热的纳米热释电探测器。设计和概念","authors":"Md Muztoba, N. Melikechi, M. Rana, D. Butler","doi":"10.1109/ICSENS.2013.6688403","DOIUrl":null,"url":null,"abstract":"We report the design of an uncooled pyroelectric detector utilizing a nanometer sized mesh to support the micromachined detector. The design had been optimized by using different geometry and electrodes. The thickness, width and dimension of each layer were changed to achieve the lowest thermal conductance. Ca-modified lead titanate (PCT) was employed as the thermometer in the detector. The design and performance of pyroelectric detectors has been conducted by simulating the structure with Intellisuite™. The simulated detector had spider web-like structure with each of the struts (ring) of spider web 100 nm wide. The pyroelectric detectors utilized a NiCr absorber, PCT sensing layer, Ti electrodes, Al2O3 structural layer to obtained lower thermal conductivity between the detector and substrate. The thermal conductance between the sensor and the substrate was found to be as low as 4.57 × 10-9 W/K.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nanomachined pyroelectric detector with low thermal conductance — Design and concepts\",\"authors\":\"Md Muztoba, N. Melikechi, M. Rana, D. Butler\",\"doi\":\"10.1109/ICSENS.2013.6688403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the design of an uncooled pyroelectric detector utilizing a nanometer sized mesh to support the micromachined detector. The design had been optimized by using different geometry and electrodes. The thickness, width and dimension of each layer were changed to achieve the lowest thermal conductance. Ca-modified lead titanate (PCT) was employed as the thermometer in the detector. The design and performance of pyroelectric detectors has been conducted by simulating the structure with Intellisuite™. The simulated detector had spider web-like structure with each of the struts (ring) of spider web 100 nm wide. The pyroelectric detectors utilized a NiCr absorber, PCT sensing layer, Ti electrodes, Al2O3 structural layer to obtained lower thermal conductivity between the detector and substrate. The thermal conductance between the sensor and the substrate was found to be as low as 4.57 × 10-9 W/K.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们报告了一种非冷却热释电探测器的设计,利用纳米尺寸的网格来支持微机械探测器。采用不同的几何形状和电极对设计进行了优化。改变每层的厚度、宽度和尺寸,以达到最低的热导率。探测器采用钙修饰钛酸铅(PCT)作为温度计。利用Intellisuite™软件对热释电探测器的结构进行了模拟,并对其进行了设计和性能分析。模拟的探测器具有类似蜘蛛网的结构,每个蜘蛛网支柱(环)的宽度为100nm。该热释电探测器利用NiCr吸收体、PCT传感层、Ti电极、Al2O3结构层来获得探测器与衬底之间较低的导热系数。传感器与衬底之间的热导率低至4.57 × 10-9 W/K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanomachined pyroelectric detector with low thermal conductance — Design and concepts
We report the design of an uncooled pyroelectric detector utilizing a nanometer sized mesh to support the micromachined detector. The design had been optimized by using different geometry and electrodes. The thickness, width and dimension of each layer were changed to achieve the lowest thermal conductance. Ca-modified lead titanate (PCT) was employed as the thermometer in the detector. The design and performance of pyroelectric detectors has been conducted by simulating the structure with Intellisuite™. The simulated detector had spider web-like structure with each of the struts (ring) of spider web 100 nm wide. The pyroelectric detectors utilized a NiCr absorber, PCT sensing layer, Ti electrodes, Al2O3 structural layer to obtained lower thermal conductivity between the detector and substrate. The thermal conductance between the sensor and the substrate was found to be as low as 4.57 × 10-9 W/K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信