{"title":"后调优哈希:一种索引高维数据的新方法","authors":"Zhendong Mao, Quan Wang, Yongdong Zhang, Bin Wang","doi":"10.1145/3240508.3240529","DOIUrl":null,"url":null,"abstract":"Learning to hash has proven to be an effective solution for indexing high-dimensional data by projecting them to similarity-preserving binary codes. However, most existing methods end up the learning scheme with a binarization stage, i.e. binary quantization, which inevitably destroys the neighborhood structure of original data. As a result, those methods still suffer from great similarity loss and result in unsatisfactory indexing performance. In this paper we propose a novel hashing model, namely Post Tuned Hashing (PTH), which includes a new post-tuning stage to refine the binary codes after binarization. The post-tuning seeks to rebuild the destroyed neighborhood structure, and hence significantly improves the indexing performance. We cast the post-tuning into a binary quadratic optimization framework and, despite its NP-hardness, give a practical algorithm to efficiently obtain a high-quality solution. Experimental results on five noted image benchmarks show that our PTH improves previous state-of-the-art methods by 13-58% in mean average precision.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"2255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Post Tuned Hashing: A New Approach to Indexing High-dimensional Data\",\"authors\":\"Zhendong Mao, Quan Wang, Yongdong Zhang, Bin Wang\",\"doi\":\"10.1145/3240508.3240529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to hash has proven to be an effective solution for indexing high-dimensional data by projecting them to similarity-preserving binary codes. However, most existing methods end up the learning scheme with a binarization stage, i.e. binary quantization, which inevitably destroys the neighborhood structure of original data. As a result, those methods still suffer from great similarity loss and result in unsatisfactory indexing performance. In this paper we propose a novel hashing model, namely Post Tuned Hashing (PTH), which includes a new post-tuning stage to refine the binary codes after binarization. The post-tuning seeks to rebuild the destroyed neighborhood structure, and hence significantly improves the indexing performance. We cast the post-tuning into a binary quadratic optimization framework and, despite its NP-hardness, give a practical algorithm to efficiently obtain a high-quality solution. Experimental results on five noted image benchmarks show that our PTH improves previous state-of-the-art methods by 13-58% in mean average precision.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"2255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Post Tuned Hashing: A New Approach to Indexing High-dimensional Data
Learning to hash has proven to be an effective solution for indexing high-dimensional data by projecting them to similarity-preserving binary codes. However, most existing methods end up the learning scheme with a binarization stage, i.e. binary quantization, which inevitably destroys the neighborhood structure of original data. As a result, those methods still suffer from great similarity loss and result in unsatisfactory indexing performance. In this paper we propose a novel hashing model, namely Post Tuned Hashing (PTH), which includes a new post-tuning stage to refine the binary codes after binarization. The post-tuning seeks to rebuild the destroyed neighborhood structure, and hence significantly improves the indexing performance. We cast the post-tuning into a binary quadratic optimization framework and, despite its NP-hardness, give a practical algorithm to efficiently obtain a high-quality solution. Experimental results on five noted image benchmarks show that our PTH improves previous state-of-the-art methods by 13-58% in mean average precision.