严重非均匀环境下最优MTI的自适应实现

H. Wang, L. Cai
{"title":"严重非均匀环境下最优MTI的自适应实现","authors":"H. Wang, L. Cai","doi":"10.1109/RADAR.1990.201191","DOIUrl":null,"url":null,"abstract":"The problem of achieving the optimum MTI (moving target indicator) detection performance in strong clutter of unknown spectrum when the set of data available for the estimation of clutter statistics is small due to a severely nonhomogeneous environment is studied. A new adaptive implementation, called the Doppler domain localized generalized likelihood ratio processor (DDL-GLR), is proposed, and its detection performance derived. It is shown that the DDL-GLR is a data-efficient implementation of the high-order optimum detector, and that it has several advantages of practical importance over other adaptive processors.<<ETX>>","PeriodicalId":441674,"journal":{"name":"IEEE International Conference on Radar","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On adaptive implementation of optimum MTI in severely nonhomogeneous environments\",\"authors\":\"H. Wang, L. Cai\",\"doi\":\"10.1109/RADAR.1990.201191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of achieving the optimum MTI (moving target indicator) detection performance in strong clutter of unknown spectrum when the set of data available for the estimation of clutter statistics is small due to a severely nonhomogeneous environment is studied. A new adaptive implementation, called the Doppler domain localized generalized likelihood ratio processor (DDL-GLR), is proposed, and its detection performance derived. It is shown that the DDL-GLR is a data-efficient implementation of the high-order optimum detector, and that it has several advantages of practical importance over other adaptive processors.<<ETX>>\",\"PeriodicalId\":441674,\"journal\":{\"name\":\"IEEE International Conference on Radar\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.1990.201191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.1990.201191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了在严重非均匀环境下,用于估计杂波统计量的数据集很少的情况下,如何在未知谱强杂波中获得最佳的运动目标指标检测性能。提出了一种新的自适应实现——多普勒域局部广义似然比处理器(DDL-GLR),并推导了其检测性能。结果表明,DDL-GLR是高阶最优检测器的数据高效实现,与其他自适应处理器相比,它具有许多具有实际意义的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On adaptive implementation of optimum MTI in severely nonhomogeneous environments
The problem of achieving the optimum MTI (moving target indicator) detection performance in strong clutter of unknown spectrum when the set of data available for the estimation of clutter statistics is small due to a severely nonhomogeneous environment is studied. A new adaptive implementation, called the Doppler domain localized generalized likelihood ratio processor (DDL-GLR), is proposed, and its detection performance derived. It is shown that the DDL-GLR is a data-efficient implementation of the high-order optimum detector, and that it has several advantages of practical importance over other adaptive processors.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信