基于脑电图的运动图像脑机接口信号处理与分类

A. Shankar, S. Muttan, D. Vaithiyanathan
{"title":"基于脑电图的运动图像脑机接口信号处理与分类","authors":"A. Shankar, S. Muttan, D. Vaithiyanathan","doi":"10.1166/jmihi.2021.3904","DOIUrl":null,"url":null,"abstract":"Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain,\n and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy\n of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"45 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal Processing and Classification for Electroencephalography Based Motor Imagery Brain Computer Interface\",\"authors\":\"A. Shankar, S. Muttan, D. Vaithiyanathan\",\"doi\":\"10.1166/jmihi.2021.3904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain,\\n and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy\\n of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.\",\"PeriodicalId\":393031,\"journal\":{\"name\":\"J. Medical Imaging Health Informatics\",\"volume\":\"45 23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Imaging Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2021.3904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2021.3904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑机接口(BCI)是一个快速发展的研究领域,它使我们的大脑和计算机之间的通信成为可能。基于脑电图的运动想象脑机接口包括用户想象运动,随后对来自大脑的脑电图信号进行记录和信号处理,并将这些信号转化为特定的命令。最终,运动想象脑机接口有可能被应用于帮助那些有特殊能力的人恢复运动控制。本文利用快速傅立叶变换和离散小波变换提取的特征,利用人工神经网络进行分类,对基于脑电的运动图像脑机接口进行了性能评价,分类准确率为80.2%。接着总结了性能如何受到特定特征集和神经网络参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Processing and Classification for Electroencephalography Based Motor Imagery Brain Computer Interface
Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain, and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信